Die dunkel hinterlegten Zellen sind dem Studienhandbuch entnommen; die alphanumerischen Klassencodes aus dem Studienhandbuch geben die Stellung der LVA im Curriculum an. Die hell hinerlegten Zellen geben die angebotenen LVAs im Semester 2024w laut KUSSS wieder; diese sind durch die LVA-Nummer identifiziert. Datenstand (KUSSS): 30.9.2024 [Nur angebotene LVAs anzeigen]
Klassencode bzw. LVA-Nummer und TitelLehrende(r)WECTSSSt.
402PFFA12: Pflichtfächer33,00
........ 402MMPH12: Mathematische Methoden der Physik27,00
................ TMAPAVOFUNK: VL Complex variables6,004,0
................ 402MMPHDGEV22: VL Differential Geometry3,002,0
................ 402MMPHDSCV22: VL Dynamical Systems and Chaos3,002,0
................ 402MMPHPOFV22: VL Pseudodifferential Operators and Fourier Integral Operators3,002,0
................ TMAPAVOSPEK: VL Spectral theory and distributions6,004,0
................ TMAPAVOTHPH: VL Theoretical physics for mathematicians6,004,0
........ 402STME12: Stochastische Methoden6,00
................ 402STMESTMV22: VL Statistical Methods3,002,0
........................ 369.110: VO Statistical Methods Weitere InfosAmira Meddah
................ 402STMESDEV22: VL Stochastic Differential Equations3,002,0
402WAFA21: Wahlfächer
Sonstige Informationen: Es sind Seminare im Ausmaß von mind. 6 ECTS aus den Wahlfächern a. Analysis, d. Mathematische Methoden in den Naturwissenschaften, k. Funktionalanalysis, l. Geometrie zu wählen.
36,00
........ 402ANAS21: a. Analysis0,00-36,00
................ TM1WAVOHARM: VL Classical harmonic analysis3,002,0
................ TM1WAUEHARM: UE Classical harmonic analysis1,501,0
................ TM1WAUEFUNK: UE Complex variables3,002,0
................ 201ANASDSCU22: UE Dynamical Systems and Chaos1,501,0
................ TM1WAVOFRAK: VL Fractals3,002,0
................ TM1WAUEFRAK: UE Fractals1,501,0
................ 403COEXIEBU22: UE Integral Equations and Boundary Value Problems1,501,0
........................ 323.007: UE Integral Equations and Boundary Value ProblemsSimon Hubmer
................ 403MAMOIEBV22: VL Integral equations and boundary value problems6,004,0
........................ 323.006: VO Integral Equations and Boundary Value Problems Weitere InfosAndreas Neubauer
................ 201ANASPOFU22: UE Pseudodifferential Operators and Fourier Integral Operators1,501,0
................ 201MASEANAS18: SE Seminar Analysis W3,002,0
........................ 324.158: SE Analysis: SpektraltheoriePaul Müller; Richard Lechner
................ 402WAFAMDSS12: SE Seminar for graduate and doctoral students W3,002,0
................ 201ANASSIPV22: VL Singular Integrals and Potential Theory3,002,0
................ 201ANASSIPU22: UE Singular Integrals and Potential Theory1,501,0
................ 201ANASSP1V12: VL Special course Analysis (1,5 ECTS) W1,501,0
................ 201ANASSP2V12: VL Special course analysis W3,002,0
................ 201ANASSP1U12: UE Special course analysis1,501,0
........ 402NUMA18: b. Numerische Mathematik0,00-12,00
................ 201MASENUAS22: SE Numerical Analysis W3,002,0
........................ 327.014: SE Numerical Analysis: Methodenseminar: Reduzierte BasismethodenHerbert Egger
........................ 327.006: SE Numerical Analysis: ForschungsseminarHerbert Egger
................ 403NUSINMCV22: VL Numerical Methods in Continuum Mechanics3,002,0
........................ 327.004: VO Numerical Methods in Continuum MechanicsHerbert Egger
................ 201NUMANMCU22: UE Numerical Methods in Continuum Mechanics1,501,0
........................ 327.008: UE Numerical Methods in Continuum MechanicsHerbert Egger
................ TM1WBVONKM2: VL Numerical methods in continuum mechanics 23,002,0
................ TM1WBUENKM2: UE Numerical methods in continuum mechanics 21,501,0
........ 402WTMS18: c. Wahrscheinlichkeitstheorie und Mathematische Statistik0,00-19,50
................ 201WTMSMACV22: VL Markov Chains3,002,0
................ 201WTMSMACU22: UE Markov Chains1,501,0
................ 201MASEPTMS22: SE Probability Theory and Mathematical Statistics W3,002,0
........................ 369.203: SE Probability Theory and Mathematical Statistics: Spezielle Kapitel der Stochastik Weitere InfosEvelyn Buckwar
................ 201WTMSSTMU22: UE Statistical Methods1,501,0
........................ 369.111: UE Statistical Methods Weitere InfosCorinna Perchtold
................ 201WTMSSDEU22: UE Stochastic Differential Equations1,501,0
................ 403MAMOSTPV22: VL Stochastic Processes3,002,0
........................ 369.002: VO Stochastic ProcessesEvelyn Buckwar
................ 201WTMSSTPU22: UE Stochastic Processes1,501,0
........................ 369.007: UE Stochastic ProcessesCorinna Perchtold
................ 201WTMSSTSV22: VL Stochastic Simulation3,002,0
................ 201WTMSSTSU22: UE Stochastic Simulation1,501,0
........ 402MMNW21: d. Mathematische Methoden in den Naturwissenschaften0,00-19,50
................ 402WAFAMDSS12: SE Seminar for graduate and doctoral students W3,002,0
................ 201MASEMMNS18: SE Seminar mathematical methods in the natural sciences W3,002,0
................ 201MMNWSP1V12: VL Special Topics mathematical methods in the natural sciences (1,5 ECTS)1,501,0
................ 201MMNWSP2V12: VL Special Topics mathematical methods in the natural sciences W3,002,0
................ 201MMNWSP1U12: UE Special Topics mathematical methods in the natural sciences W1,501,0
................ TMAPAVOTHPH: VL Theoretical physics for mathematicians6,004,0
................ TM1WDUETHPH: UE Theoretical physics for mathematicians1,501,0
........ 402MMTK18: e. Mathematische Methoden in der Technik0,00-21,00
................ 403MAMOINPV22: VL Inverse problems3,002,0
................ TM1WEUEINVE: UE Inverse problems1,501,0
................ 403COEXMMEU22: UE Mathematical Methods in Continuum Mechanics1,501,0
........................ 323.004: UE Mathematical Methods in Continuum MechanicsSimon Hubmer
................ 201MMTKMMEV22: VL Mathematical Methods in Electrodynamics3,002,0
................ 201MASEMMES22: SE Mathematical Methods in Engineering W3,002,0
........................ 323.008: SE Mathematical Methods in EngineeringRonny Ramlau
................ 403MAMOMMCV22: VL Mathematical methods in continuum mechanics6,004,0
........................ 323.003: VO Mathematical Methods in Continuum MechanicsStefan Kindermann
................ TM1WEUEMETE: UE Mathematical methods in electrical engineering1,501,0
........ 402MMWW12: f. Mathematische Methoden in den Wirtschaftswissenschaften0,00-3,00
................ 201MASEMIES22: SE Mathematical Methods in the Economic Sciences W3,002,0
........ 402OPTI12: g. Optimierung0,00-7,50
................ 201OPTICOVV22: VL Calculus of Variation3,002,0
........................ 324.198: VO Calculus of Variation Weitere InfosPaul Müller
................ 201OPTICOVU22: UE Calculus of Variation1,501,0
........................ 324.199: UE Calculus of Variation Weitere InfosPaul Müller
................ 201MASEOPTS22: SE Optimization W3,002,0
........ 402SYMR12: h. Symbolisches Rechnen0,00-3,00
................ 201MASESYMS20: SE Seminar symbolic computation W3,002,0
........................ 326.063: SE Symbolic Computation: Projektseminar Formale Methoden und Automatisches Beweisen Weitere InfosWolfgang Schreiner; Teimuraz Kutsia; Wolfgang Windsteiger
........................ 326.CA1: SE Symbolic Computation: Computer Algebra and Applications Weitere InfosCarsten Schneider
........................ 326.060: SE Symbolic Computation: Forschungsthemen in Algebra und KombinatorikJosef Schicho
........ 402LOSD12: i. Logik und Softwaredesign0,00-3,00
................ 201MASELSDS20: SE Seminar logic and software design W3,002,0
........ 402ADMA18: j. Algebra und Diskrete Mathematik0,00-10,50
................ 201ADMAALGV20: VL Algebra6,004,0
........................ 368.003: VL AlgebraPeter Fuchs
................ 201ADMAALGU20: UE Algebra1,501,0
........................ 368.135: UE Algebra Weitere InfosPeter Fuchs
................ 201MASEADMS20: SE Seminar algebra and discrete mathematics W3,002,0
........................ 368.303: SE Algebra and Discrete Mathematics: Projektseminar Mathematische TalenteManuel Kauers; Georg Grasegger
........................ 368.000: SE Algebra and Discrete Mathematics: Research Seminar Weitere InfosManuel Kauers
........ 402FUAN12: k. Funktionalanalysis0,00-33,00
................ TM1WKVODIST: VL Distributions and locally convex spaces3,002,0
................ TM1WKUEDIST: UE Distributions and locally convex spaces1,501,0
................ TM1WKVOERGO: VL Ergodic theory3,002,0
................ TM1WKUEERGO: UE Ergodic theory1,501,0
................ TM1WKVOOPER: VL Operator theory3,002,0
........................ 324.160: VO Operator theory Weitere InfosMario Ullrich
................ TM1WKUEOPER: UE Operator theory1,501,0
........................ 324.163: UE Operator theory Weitere InfosMario Ullrich
................ 201MASEFUAS18: SE Seminar Functional analysis W3,002,0
................ 402WAFAMDSS12: SE Seminar for graduate and doctoral students W3,002,0
................ TM1WKVOSOBO: VL Sobolev spaces3,002,0
................ TM1WKUESOBO: UE Sobolev spaces1,501,0
................ 201FUANSP1V12: VL Special Topics Functional analysis (1,5 ECTS) W1,501,0
................ 201FUANSP2V12: VL Special Topics Functional analysis W3,002,0
................ 201FUANSP1U12: UE Special Topics Functional analysis W1,501,0
................ TM1WKUESPEK: UE Spectral theory and distributions3,002,0
........ 402GEOM21: l. Geometrie0,00-34,50
................ TM1WLVOHDGE: VL Advanced differential geometry3,002,0
................ TM1WLUEHDGE: UE Advanced differential geometry1,501,0
................ TM1WLVOHTOP: VL Advanced topolopy3,002,0
................ TM1WLUEHTOP: UE Advanced topolopy1,501,0
................ 201GEOMCOGV14: VL Computational Geometry3,002,0
........................ 356.190: VL Computational Geometry Weitere InfosBert Jüttler
................ 201GEOMCOGU14: UE Computational Geometry1,501,0
........................ 356.191: UE Computational Geometry Weitere InfosJana Vrablikova
................ TM1WLVOCAGD: VL Computer-aided geometric design3,002,0
................ TM1WLUECAGD: UE Computer-aided geometric design1,501,0
................ 201GEOMDGEU22: UE Differential Geometry1,501,0
................ 201MASEGEOS22: SE Geometry W3,002,0
........................ 356.300: SE Geometry: Recent Results in Applied Geometry Weitere InfosBert Jüttler; Jana Vrablikova
................ TM1WLVOTOPO: VL Introduction to topology3,002,0
................ TM1WLUETOPO: UE Introduction to topology1,501,0
................ 402WAFAMDSS12: SE Seminar for graduate and doctoral students W3,002,0
................ TM1WLVOSPLI: VL Splines3,002,0
................ TM1WLUESPLI: UE Splines1,501,0
........ 402WIMS12: m. Wissensbasierte mathematische Systeme0,00-3,00
................ 201MASEWISS18: SE Seminar Knowledge-based Mathematical Systems W3,002,0
........................ 357.507: SE Mathematical Modelling Weitere InfosLuca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein
........ 402ZATH12: n. Zahlentheorie0,00-7,50
................ 201ZATHNMNV22: VL Number-theoretic Methods in Numerical Analysis3,002,0
................ 201ZATHNMNU22: UE Number-theoretic Methods in Numerical Analysis1,501,0
................ 201MASENTHS20: SE Seminar Number theory W3,002,0
........................ 325.003: SE Number TheoryGerhard Larcher
........ 402GEND18: o. Gender Studies0,00-6,00
................ GS-BC: VL Ethics and Gender Studies3,002,0
........................ 536.020: VO Ethics and Gender Studies: Biology, Ethics and GenderWaltraud Ernst
................ GS-ME-TN: KV Gender Studies Managing Equality TN3,002,0
........................ 536.027: KV Gender Studies Managing Equality TN: Gender in Science and TechnologyBettina Bock von Wülfingen
402FRST12: Freie Studienleistungen10,50
Masterarbeit (keine Masterarbeitsseminare vorgesehen!)36,00
Masterprüfung4,50