Die dunkel hinterlegten Zellen sind dem Studienhandbuch entnommen; die alphanumerischen Klassencodes aus dem Studienhandbuch geben die Stellung der LVA im Curriculum an. Die hell hinerlegten Zellen geben die angebotenen LVAs im Semester 2023w laut KUSSS wieder; diese sind durch die LVA-Nummer identifiziert.[Nur angebotene LVAs anzeigen]
Klassencode bzw. LVA-Nummer und TitelLehrende(r)WECTSSSt.
201PFFA18: Pflichtfächer132,00
........ 201ALGE18: Algebra und Geometrie33,00
................ TM1PBVOLIN1: VL Lineare Algebra und Analytische Geometrie 1B17,505,0
........................ 368.101: VO Lineare Algebra und Analytische Geometrie 1Manuel Kauers
................ TM1PBUELIN1: UE Lineare Algebra und Analytische Geometrie 1B13,002,0
........................ 368.107: UE Lineare Algebra und Analytische Geometrie 1Thomas Speckhofer; Manuel Kauers
........................ 368.002: UE Lineare Algebra und Analytische Geometrie 1Manuel Kauers; Georg Ehling
................ TM1PBVOLIN2: VL Lineare Algebra und Analytische Geometrie 2B17,505,0
................ TM1PBUELIN2: UE Lineare Algebra und Analytische Geometrie 2B13,002,0
................ 201ALGEADMV18: VL Algebra und Diskrete MathematikB24,503,0
................ 201ALGEADMU18: UE Algebra und Diskrete MathematikB21,501,0
................ 201ALGEGEOV18: VL Einführung in die GeometrieB24,503,0
........................ 356.280: VL Einführung in die Geometrie Weitere InfosBert Jüttler
................ 201ALGEGEOU12: UE Einführung in die GeometrieB21,501,0
........................ 356.289: UE Einführung in die GeometrieFelix Scholz
........ 201ANLS18: Analysis39,00
................ TM1PAVOANA1: VL Analysis 1B17,505,0
........................ 323.036: VO Analysis 1 Weitere InfosAndreas Neubauer
................ TM1PAUEANA1: UE Analysis 1B13,002,0
........................ 323.037: UE Analysis 1 Weitere InfosRoland Wagner
................ TM1PAVOANA2: VL Analysis 2B17,505,0
................ TM1PAUEANA2: UE Analysis 2B13,002,0
................ 201ANLSFANV18: VL FunktionalanalysisB24,503,0
................ 201ANLSFANU18: UE FunktionalanalysisB21,501,0
................ 201ANLSGD1V18: VL Gewöhnliche Differentialgleichungen und Dynamische SystemeB24,503,0
........................ 326.106: VL Gewöhnliche Differentialgleichungen und Dynamische Systeme Weitere InfosJosef Schicho
................ 201ANLSGD1U18: UE Gewöhnliche Differentialgleichungen und Dynamische SystemeB21,501,0
........................ 326.107: UE Gewöhnliche Differentialgleichungen und Dynamische SystemeJosef Schicho
................ TM1PAVOPDGL: VL Partielle DifferentialgleichungenB26,004,0
........ 201ATMA18: Arbeitstechniken der Mathematik16,50
................ 201ATMAALMK18: KV Algorithmische MethodenB13,002,0
................ 201ATMAAMNK18: KV Algorithmische Methoden in der NumerikB13,002,0
................ TM1PGKVLOGA: KV Logik als ArbeitsspracheB13,002,0
........................ 326.048: KV Logik als Arbeitssprache Weitere InfosWolfgang Windsteiger
................ 201ATMAPR1K18: KV Programmierung 1B14,503,0
........................ 327.371: KV Programmierung 1 Weitere InfosHelmut Gfrerer
................ 201ATMAPR2K18: KV Programmierung 2B13,002,0
........ 201COMA18: Computermathematik13,50
................ 201COMAAUDV18: VL Algorithmen und DatenstrukturenB23,002,0
........................ 326.102: VL Algorithmen und Datenstrukturen Weitere InfosCarsten Schneider
................ 201COMAAKOV18: VL Algorithmische KombinatorikB23,002,0
................ 201COMACOLV18: VL Computational LogicB23,002,0
........................ 326.010: VL Computational Logic Weitere InfosWolfgang Schreiner
................ 201COMACALV18: VL Computer AlgebraB33,002,0
........................ 326.105: VL Computer Algebra Weitere InfosCarsten Schneider
................ 201COMACALU18: UE Computer AlgebraB31,501,0
........................ 326.031: UE Computer Algebra Weitere InfosGünter Landsmann
........ 201NUOP18: Numerische Mathematik und Optimierung16,50
................ 201NUOPNUAV18: VL Numerische AnalysisB23,002,0
........................ 327.001: VL Numerische Analysis Weitere InfosHelmut Gfrerer
................ 201NUOPNUAU18: UE Numerische AnalysisB21,501,0
........................ 327.002: UE Numerische Analysis Weitere InfosMichael Winkler
................ TM1PDVONPDG: VL Numerik Partieller DifferentialgleichungenB36,004,0
........................ 327.320: VO Numerik Partieller DifferentialgleichungenStefan Takacs
................ 201NUOPOPTV18: VL OptimierungB34,503,0
................ 201NUOPOPTU18: UE OptimierungB31,501,0
........ 201STST18: Stochastik und Statistik13,50
................ 201STSTMITV18: VL Maß- und IntegrationstheorieB23,002,0
........................ 369.101: VL Maß- und Integrationstheorie Weitere InfosEvelyn Buckwar
................ 201STSTMITU18: UE Maß- und IntegrationstheorieB21,501,0
........................ 369.001: UE Maß- und Integrationstheorie Weitere InfosCorinna Perchtold
................ 201STSTWTSV18: VL Wahrscheinlichkeitstheorie und StatistikB26,004,0
................ 201STSTWTSU18: UE Wahrscheinlichkeitstheorie und StatistikB23,002,0
201WAFA18: Wahlfächer
Beachte Mindest- und Höchstgrenzen für ECTS, insbesondere in den Modellierungs-, Seminar-, Übungs- und Gender-Studies-Töpfen.
30,00
........ 201MAMO18: Mathematisches Modellieren6,00-9,00
................ 201MAMOFMOV18: VL Formales Modellieren3,002,0
................ 201MAMOMMNV18: VL Mathematische Modelle in den Naturwissenschaften3,002,0
................ 201MAMOMMWV18: VL Mathematische Modelle in den Wirtschaftswissenschaften3,002,0
................ 201MAMOMMTV18: VL Mathematische Modelle in der Technik3,002,0
........................ 327.420: VL Mathematische Modelle in der TechnikAndreas Schafelner
................ 201MAMOWDMV18: VL Wissens- und Datenbasiertes Modellieren3,002,0
........ 201MASE18: Mathematische Seminare3,00-6,00
................ 201MASEADMS23: SE Algebra and Discrete Mathematics W3,002,0
........................ 368.303: SE Algebra and Discrete Mathematics: Projektseminar Mathematische TalenteGeorg Grasegger; Manuel Kauers
........................ 368.158: SE Algebra and Discrete MathematicsErhard Aichinger
........................ 368.000: SE Algebra and Discrete Mathematics: Research SeminarManuel Kauers
................ 201MASEANAS23: SE Analysis W3,002,0
........................ 324.158: SE Analysis: FunktionalanalysisPaul Müller; Richard Lechner
................ 201MASEFMOU18: PS Formales Modellieren3,002,0
................ 201MASEFUAS23: SE Funktionalanalysis W3,002,0
................ 201MASEGEOS22: SE Geometry W3,002,0
........................ 356.300: SE Geometry: Recent Results in Computer Aided Geometric Design Weitere InfosBert Jüttler; Felix Scholz
................ 201MASEMMES22: SE Mathematical Methods in Engineering W3,002,0
........................ 323.008: SE Mathematical Methods in EngineeringRonny Ramlau
................ 201MASEMIES22: SE Mathematical Methods in the Economic Sciences W3,002,0
................ 201MASEWISS23: SE Mathematical Modelling W3,002,0
........................ 357.507: SE Mathematical Modelling Weitere InfosLuca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein
................ 201MASEMMNS23: SE Mathematische Methoden in den Naturwissenschaften W3,002,0
........................ 357.509: SE Mathematische Methoden in den Naturwissenschaften Weitere InfosLuca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein
................ 201MASEMMNU18: PS Mathematische Modelle in den Naturwissenschaften3,002,0
................ 201MASEMMWU18: PS Mathematische Modelle in den Wirtschaftswissenschaften3,002,0
................ 201MASEMMTU18: PS Mathematische Modelle in der Technik3,002,0
........................ 327.421: PS Mathematische Modelle in der TechnikAndreas Schafelner
................ 201MASENTHS23: SE Number Theory W3,002,0
................ 201MASENUAS22: SE Numerical Analysis W3,002,0
........................ 327.014: SE Numerical Analysis: MethodenseminarHerbert Egger; Helmut Gfrerer
........................ 327.006: SE Numerical Analysis: ForschungsseminarHerbert Egger; Helmut Gfrerer
................ 201MASEOPTS22: SE Optimization W3,002,0
................ 201MASEPTMS22: SE Probability Theory and Mathematical Statistics W3,002,0
................ 201MASESYMS23: SE Symbolic Computation W3,002,0
........................ 326.063: SE Symbolic Computation: Projektseminar Formale Methoden und Automatisches Beweisen I Weitere InfosWolfgang Schreiner; Teimuraz Kutsia; Wolfgang Windsteiger
........................ 326.CA1: SE Symbolic Computation: Computer Algebra and Applications I Weitere InfosCarsten Schneider
........................ 326.060: SE Symbolic Computation: Forschungsthemen in Algebra und KombinatorikJosef Schicho
................ 201MASEWDMU18: PS Wissens- und Datenbasiertes Modellieren3,002,0
........ 201UPDG18: Übungen zu Partiellen Differentialgleichungen3,00-6,00
................ 201UPDGNPDU18: UE Numerik Partieller Differentialgleichungen3,002,0
........................ 327.321: UE Numerik Partieller DifferentialgleichungenStefan Tyoler
................ 201UPDGPDGU18: UE Partielle Differentialgleichungen3,002,0
........ 201UCMA18: Übungen aus der Computermathematik1,50-4,50
................ 201UCMAAUDU18: UE Algorithmen und Datenstrukturen1,501,0
........................ 326.103: UE Algorithmen und Datenstrukturen Weitere InfosIoana Cleopatra Pau
................ 201UCMAAKOU18: UE Algorithmische Kombinatorik1,501,0
................ 201UCMACOLU18: UE Computational Logic1,501,0
........................ 326.011: UE Computational Logic Weitere InfosNikolaj Popov
........ 201GEND18: Gender Studies3,00-6,00
................ GS-TNE: KV Gender Studies TNF - Einführung3,002,0
........................ 536.021: KV Gender Studies TNF - Einführung: Technik und GeschlechtAndrea Guttmann
........................ 536.008: KV Gender Studies TNF - Einführung: Technik und GeschlechtAndrea Guttmann
................ GS-SK2: KV Gender Studies und soziale Kompetenz3,002,0
................ 201GENDSP2V12: VL Spezialvorlesung Gender Studies3,002,0
........ 201ANAS18: Analysis0,00-13,50
................ 201ANASAN1V12: KO Analysis 10,002,0
........................ 327.307: KO Analysis 1Ewald Lindner
................ 201ANASAN2V12: KO Analysis 20,002,0
................ 404ANACCANV23: VL Complex Analysis4,503,0
................ 201ANASCANU23: UE Complex Analysis3,002,0
................ 404ANACDSCV23: VL Dynamical Systems and Chaos3,002,0
................ 201ANASDSCU22: UE Dynamical Systems and Chaos1,501,0
................ TM1WAVOFRAK: VL Fraktale3,002,0
................ TM1WAUEFRAK: UE Fraktale1,501,0
................ 403COEXIEBU22: UE Integral Equations and Boundary Value Problems1,501,0
........................ 323.007: UE Integral Equations and Boundary Value Problems Weitere InfosRoland Wagner
................ 403MAMOIEBV22: VL Integral equations and boundary value problems6,004,0
........................ 323.006: VO Integral Equations and Boundary Value ProblemsRonny Ramlau; Simon Hubmer
................ TM1WAVOHARM: VL Klassische Harmonische Analysis3,002,0
................ TM1WAUEHARM: UE Klassische Harmonische Analysis1,501,0
................ 201ANASPOFV23: VL Pseudodifferential Operators and Fourier Integral Operators3,002,0
................ 201ANASPOFU22: UE Pseudodifferential Operators and Fourier Integral Operators1,501,0
................ 201ANASSIPV22: VL Singular Integrals and Potential Theory3,002,0
................ 201ANASSIPU22: UE Singular Integrals and Potential Theory1,501,0
................ 201ANASSP1V12: VL Spezialvorlesung Analysis (1,5 ECTS) W1,501,0
................ 201ANASSP2V12: VL Spezialvorlesung Analysis W3,002,0
........................ 324.122: VL Spezialvorlesung Analysis: Approximation theory for Machine LearningMario Ullrich
................ 201ANASSP1U12: UE Spezialvorlesung Analysis1,501,0
........ 201NUMA18: Numerische Mathematik0,00-13,50
................ 403NUMACELV22: VL Computational Electromagnetics3,002,0
................ 403NUSINMEV22: VL Numerical Methods for Elliptic Equations6,004,0
................ 403COEXNMEU22: UE Numerical Methods for Elliptic Equations1,501,0
................ 403NUSINMCV22: VL Numerical Methods in Continuum Mechanics3,002,0
........................ 327.004: VO Numerical Methods in Continuum MechanicsHerbert Egger
................ 201NUMANMCU22: UE Numerical Methods in Continuum Mechanics1,501,0
........................ 327.008: UE Numerical Methods in Continuum MechanicsHerbert Egger
................ TM1WBVONKM2: VL Numerische Methoden der Kontinuumsmechanik 23,002,0
................ TM1WBUENKM2: UE Numerische Methoden der Kontinuumsmechanik 21,501,0
................ 201NUMASP1V22: VL Special Topics Numerical Analysis (1.5 ECTS) W1,501,0
................ 201NUMASP2V22: VL Special Topics Numerical Analysis W3,002,0
........................ 327.009: VL Special Topics Numerical Analysis: Monotone operators in nonlinear PDEsMarvin Fritz
................ 201NUMASP1U22: UE Special Topics Numerical Analysis W1,501,0
........................ 327.007: UE Special Topics Numerical Analysis: Monotone operators in nonlinear PDEsMarvin Fritz
........ 201WTMS18: Wahrscheinlichkeitstheorie und Mathematische Statistik0,00-13,50
................ 201WTMSMACV22: VL Markov Chains3,002,0
................ 201WTMSMACU22: UE Markov Chains1,501,0
................ 201WTMSQUTV22: VL Queueing Theory3,002,0
................ 201WTMSQUTU22: UE Queueing Theory1,501,0
................ 201WTMSRETV22: VL Reliability Theory3,002,0
........................ 369.003: VO Reliability Theory: Einführung in Grundbegriffe, Methoden u. Probleme der Zuverlässigkeitsanalyse von techn. Systemen Weitere InfosDmitry Efrosinin
................ 201WTMSRETU22: UE Reliability Theory1,501,0
........................ 369.122: UE Reliability Theory Weitere InfosDmitry Efrosinin
................ 201WTMSSP1V22: VL Special Topics Probability Theory and Mathematical Statistics (1.5 ECTS) W1,501,0
................ 201WTMSSP2V22: VL Special Topics Probability Theory and Mathematical Statistics W3,002,0
........................ 369.008: VL Special Topics Probability Theory and Mathematical Statistics: Stochastische Numerik Weitere InfosEvelyn Buckwar
................ 201WTMSSP1U22: UE Special Topics Probability Theory and Mathematical Statistics W1,501,0
................ 404MMMCSTMV23: VL Statistical Methods3,002,0
........................ 369.110: VO Statistical Methods Weitere InfosAmira Meddah
................ 201WTMSSTMU22: UE Statistical Methods1,501,0
........................ 369.111: UE Statistical Methods Weitere InfosCorinna Perchtold
................ 403PTMSSDEV22: VL Stochastic Differential Equations 23,002,0
................ 404STCCSDEV23: VL Stochastic Differential Equations4,503,0
................ 201WTMSSDEU22: UE Stochastic Differential Equations1,501,0
................ 403MAMOSTPV22: VL Stochastic Processes3,002,0
........................ 325.006: VO Stochastic ProcessesSascha Desmettre
................ 201WTMSSTPU22: UE Stochastic Processes1,501,0
........................ 325.007: UE Stochastic ProcessesSascha Desmettre
................ 201WTMSSTSV22: VL Stochastic Simulation3,002,0
................ 201WTMSSTSU22: UE Stochastic Simulation1,501,0
........ 201MMNW18: Mathematische Methoden in den Naturwissenschaften0,00-13,50
................ 201MMNWSP1V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften (1,5 ECTS)1,501,0
................ 201MMNWSP2V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften W3,002,0
................ 201MMNWSP1U12: UE Spezialvorlesung Mathematische Methoden in den Naturwissenschaften W1,501,0
................ 404MMNSTPMV23: VL Theoretical physics for mathematicians6,004,0
................ 201MMNWTPMU23: UE Theoretical physics for mathematicians1,501,0
........ 201MMTK18: Mathematische Methoden in der Technik0,00-13,50
................ 403MAMOINPV22: VL Inverse problems3,002,0
................ 201MMTKINPU23: UE Inverse problems1,501,0
................ 403COEXMMEU22: UE Mathematical Methods in Continuum Mechanics1,501,0
........................ 323.004: UE Mathematical Methods in Continuum Mechanics Weitere InfosRoland Wagner
................ 201MMTKMMEV22: VL Mathematical Methods in Electrodynamics3,002,0
................ 201MMTKMMEU23: UE Mathematical Methods in Electrodynamics1,501,0
................ 403MAMOMMCV22: VL Mathematical methods in continuum mechanics6,004,0
........................ 323.003: VO Mathematical Methods in Continuum MechanicsStefan Kindermann
................ 201MMTKSP1V22: VL Special Topics Mathematical Methods in Engineering (1.5 ECTS)1,501,0
................ 201MMTKSP2V22: VL Special Topics Mathematical Methods in Engineering3,002,0
................ 201MMTKSP1U22: UE Special Topics Mathematical Methods in Engineering1,501,0
................ 404MMMCWFAV23: VL Wavelets – Functional Analytical Basics3,002,0
................ 404MMENWFAU23: UE Wavelets – Functional Analytical Basics1,501,0
........ 201MMWW18: Mathematische Methoden in den Wirtschaftswissenschaften0,00-13,50
................ 403MAMOFIMV22: VL Financial Mathematics4,503,0
........................ 325.002: VO Financial MathematicsPeter Kritzer
................ 201MMWWFIMV22: UE Financial Mathematics1,501,0
........................ 325.004: UE Financial MathematicsFlorian Aichinger
................ 404MAMCNLIV23: VL Non-Life Insurance Mathematics3,002,0
........................ 325.011: VL Non-Life Insurance MathematicsSascha Desmettre
................ 201MMWWSP1V22: VL Special Topics Mathematical Methods in the Economic Sciences (1.5 ECTS)1,501,0
................ 201MMWWSP2V22: VL Special Topics Mathematical Methods in the Economic Sciences W3,002,0
................ 201MMWWSP1U22: UE Special Topics Mathematical Methods in the Economic Sciences W1,501,0
........................ 325.009: UE Special Topics Mathematical Methods in the Economic Sciences: Non-life Insurance MathematicsSascha Desmettre
................ TM1WFVOVERS: VL Versicherungsmathematik3,002,0
........ 201OPTI18: Optimierung0,00-13,50
................ 201OPTICOVV22: VL Calculus of Variation3,002,0
................ 201OPTICOVU22: UE Calculus of Variation1,501,0
................ 201OPTISP1V22: VL Special Topics Optimization (1.5 ECTS) W1,501,0
................ 201OPTISP2V22: VL Special Topics Optimization W3,002,0
................ 201OPTISP1U22: UE Special Topics Optimization W1,501,0
........ 201SYMR18: Symbolisches Rechnen0,00-13,50
................ 404ALBRALVC23: VL Algebraic Combinatorics3,002,0
........................ 326.030: VL Algebraic Combinatorics Weitere InfosSilviu Radu; Veronika Pillwein
................ 201SYMRACOU20: UE Algebraic combinatorics1,501,0
........................ 326.101: UE Algebraic combinatorics Weitere InfosKoustav Banerjee
................ 404SLOCAURV23: VL Automated Reasoning4,503,0
................ 201SYMBAURU23: UE Automated Reasoning1,501,0
................ 404GEOCCAAV23: VL Commutative algebra and algebraic geometry3,002,0
........................ 326.0KA: VL Commutative Algebra and Algebraic Geometry Weitere InfosJosef Schicho
................ 201SYMRCAGU20: UE Commutative algebra and algebraic geometry1,501,0
................ 201SYMBCTHV23: VL Computability theory3,002,0
................ 201SYMBDAAV23: VL Design and Analysis of Algorithms3,002,0
........................ 326.0D1: VL Design and Analysis of Algorithms Weitere InfosIoana Cleopatra Pau
................ 921SOENFMSK13: KV Formal Methods in Software Development4,503,0
........................ 326.013: KV Formal Methods in Software Development Weitere InfosWolfgang Schreiner
................ 201SYMBFPLV23: VL Formal Semantics of Programming Languages3,002,0
................ 201SYMBIPDV23: VL Introduction to parallel and distributed computing3,002,0
................ 404SLOCMALV23: VL Mathematical Logic3,002,0
................ 201SYMBML1U23: UE Mathematical logic1,501,0
................ 404PCSDPSTK20: KV Practical Software Technology4,503,0
................ 201SYMBPLSK23: KV Practical in Symbolic Computation W3,002,0
........................ 326.121: KV Practical in Symbolic Computation: Logic programming Weitere InfosTeimuraz Kutsia
................ 201SYMRPSRK20: KV Programming project symbolic computation W3,002,0
................ 201SYMBRCLV23: VL Rewriting in Computer Science and Logic3,002,0
................ 201SYMRSF2V20: VL Special Functions and Symbolic Summation3,002,0
................ 201SYMRSF2U21: UE Special Functions and Symbolic Summation1,501,0
................ 201SYMRSP1V20: VL Special Topics symbolic computation (1.5 ECTS) W1,501,0
................ 201SYMRSP2V20: VL Special Topics symbolic computation W3,002,0
........................ 326.00E: VL Special Topics symbolic computation: Formale Sprachen und formale Grammatiken II Weitere InfosNikolaj Popov
................ 201SYMRSP2U20: UE Special Topics symbolic computation W1,501,0
................ 404CANCSSIV23: VL Symbolic Summation and Integration4,503,0
........................ 326.079: VL Symbolic Summation and Integration Weitere InfosCarsten Schneider
................ 201SYMRSSIU23: UE Symbolic Summation and Integration1,501,0
................ TM1WIVOTHSW: VL Thinking, Speaking, Writing W3,002,0
........................ 326.057: VO Thinking, Speaking, Writing: Understanding and Creating Mathematical Proofs Weitere InfosSilviu Radu
........ 201ADMA18: Algebra und Diskrete Mathematik0,00-13,50
................ 404CANCACAV23: VL Advanced Computer Algebra3,002,0
................ 201ADMAACAU23: UE Advanced Computer Algebra1,501,0
................ 404ALBRALGV23: VL Algebra6,004,0
................ 201ADMAALGU20: UE Algebra1,501,0
................ 404ALBRDEMV23: VL Discrete Mathematics3,002,0
................ 201ADMADEMU23: UE Discrete Mathematics1,501,0
................ 201ADMAGRBV20: VL Groebner Bases3,002,0
................ 201ADMALA1V12: KO Lineare Algebra und Analytische Geometrie 10,002,0
........................ 368.105: KO Lineare Algebra und Analytische Geometrie 1Georg Ehling; Thomas Speckhofer
................ 201ADMALA2V12: KO Lineare Algebra und Analytische Geometrie 20,002,0
................ 201ADMASP1V20: VL Special Topics algebra and discrete mathematics (1.5 ECTS) W1,501,0
................ 201ADMASP2V20: VL Special Topics algebra and discrete mathematics W3,002,0
........................ 368.157: VL Special Topics algebra and discrete mathematics: Universal Algebra Weitere InfosErhard Aichinger
................ 201ADMASP1U20: UE Special Topics algebra and discrete mathematics W1,501,0
........ 201FUAN18: Funktionalanalysis0,00-13,50
................ TM1WKVODIST: VL Distributionen und lokalkonvexe Räume W3,002,0
........................ 324.139: VO Distributionen und lokalkonvexe RäumeRichard Lechner
................ TM1WKUEDIST: UE Distributionen und lokalkonvexe Räume W1,501,0
................ TM1WKVOERGO: VL Ergodentheorie3,002,0
................ TM1WKUEERGO: UE Ergodentheorie1,501,0
................ TM1WKVOOPER: VL Operatorentheorie3,002,0
................ TM1WKUEOPER: UE Operatorentheorie1,501,0
................ TM1WKVOSOBO: VL Sobolev-Räume W3,002,0
........................ 324.171: VO Sobolev-Räume Weitere InfosPaul Müller
................ TM1WKUESOBO: UE Sobolev-Räume1,501,0
................ 404ANACSTDV23: VL Spectral theory and distributions4,503,0
................ 201FUANSTDU23: UE Spectral theory and distributions3,002,0
................ 201FUANSP1V12: VL Spezialvorlesung Funktionalanalysis (1,5 ECTS) W1,501,0
................ 201FUANSP2V12: VL Spezialvorlesung Funktionalanalysis W3,002,0
........................ 324.220: VL Spezialvorlesung Funktionalanalysis: Compressed sensing Weitere InfosDavid Krieg
................ 201FUANSP1U12: UE Spezialvorlesung Funktionalanalysis W1,501,0
........ 201GEOM18: Geometrie0,00-13,50
................ 404GEOCCOGV23: VL Computational Geometry3,002,0
................ 201GEOMCOGU14: UE Computational Geometry1,501,0
................ 404GEOCCGDV23: VL Computer-aided geometric design3,002,0
................ TM1WLUECAGD: UE Computer-aided geometric design1,501,0
................ 404GEOCDGEV23: VL Differential Geometry3,002,0
........................ 356.004: VO Differential Geometry Weitere InfosBert Jüttler
................ 201GEOMDGEU22: UE Differential Geometry1,501,0
........................ 356.003: UE Differential GeometrySofia Trautner
................ TM1WLVOTOPO: VL Einführung in die Topologie3,002,0
................ TM1WLUETOPO: UE Einführung in die Topologie1,501,0
................ TM1WLVOHDGE: VL Höhere Differentialgeometrie3,002,0
................ TM1WLUEHDGE: UE Höhere Differentialgeometrie1,501,0
................ TM1WLVOHTOP: VL Höhere Topologie3,002,0
................ TM1WLUEHTOP: UE Höhere Topologie1,501,0
................ 201GEOMSP1V22: VL Special Topics Geometry (1.5 ECTS) W1,501,0
................ 201GEOMSP2V22: VL Special Topics Geometry W3,002,0
................ 201GEOMSP1U22: UE Special Topics Geometry W1,501,0
................ TM1WLVOSPLI: VL Splines3,002,0
................ TM1WLUESPLI: UE Splines1,501,0
........ 201WIMS18: Wissensbasierte mathematische Systeme0,00-13,50
................ 201WIMSFUSV18: VL Fuzzy Systems3,002,0
........................ 357.402: VL Fuzzy Systems Weitere InfosSusanne Saminger-Platz
................ 201WIMSFUSU18: UE Fuzzy Systems1,501,0
........................ 357.403: UE Fuzzy Systems Weitere InfosSusanne Saminger-Platz
................ 201WIMSMVLV23: VL Manyvalued Logic3,002,0
........................ 357.600: VL Manyvalued Logic Weitere InfosStefano Fioravanti
................ 201WIMSMVLU20: UE Manyvalued Logic1,501,0
........................ 357.601: UE Manyvalued Logic Weitere InfosStefano Fioravanti
................ 404KBMSPKBK20: KV Practical Knowledge-Based Systems3,002,0
................ 201WIMSSP1V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme (1,5 ECTS) W1,501,0
................ 201WIMSSP2V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme W3,002,0
................ 201WIMSSP1U12: UE Spezialvorlesung Wissensbasierte mathematische Systeme W1,501,0
........ 201ZATH18: Zahlentheorie0,00-13,50
................ 201ZATHANTV23: VL Applied Number Theory3,002,0
........................ 325.005: VL Applied Number TheoryArne Winterhof
................ 201ZATHANTU20: UE Applied Number Theory1,501,0
................ 201ZATHCRGV20: VL Cryptography3,002,0
................ 201ZATHCRGU20: UE Cryptography1,501,0
................ 201ZAHLEKOV20: VL Einführung in die Kombinatorik3,002,0
................ 201ZATHEZTV20: VL Einführung in die Zahlentheorie3,002,0
................ 201ZATHEZTU20: UE Einführung in die Zahlentheorie1,501,0
................ 404CANCNUTV23: VL Number Theory4,503,0
................ 201ZATHNTHU23: UE Number Theory1,501,0
................ 201ZATHNMNV22: VL Number-theoretic Methods in Numerical Analysis W3,002,0
................ 201ZATHNMNU22: UE Number-theoretic Methods in Numerical Analysis1,501,0
................ 201ZATHSP1V20: VL Special Topics Number theory (1,5 ECTS) W1,501,0
................ 201ZATHSP2V20: VL Special Topics Number theory W3,002,0
................ 201ZATHSP1U20: UE Special Topics Number theory W1,501,0
........ 201EMAA12: Ethik in der Mathematik und ihren Anwendungen0,00-3,00
................ TM1WOKVETHI: KV Ethik in der Mathematik und ihren Anwendungen3,002,0
201BAAR18: Bachelorarbeit9,00
........ 201BAARBASS18: SE Bachelorseminar mit Bachelorarbeit9,002,0
................ 324.112: SE Bachelorseminar mit Bachelorarbeit Weitere InfosMichael Schmuckenschläger
................ 325.001: SE Bachelorseminar mit BachelorarbeitGerhard Larcher
................ 327.003: SE Bachelorseminar mit BachelorarbeitHelmut Gfrerer; Herbert Egger; Stefan Takacs
................ 356.320: SE Bachelorseminar mit BachelorarbeitBert Jüttler
................ 368.161: SE Bachelorseminar mit BachelorarbeitManuel Kauers; Erhard Aichinger; Peter Fuchs; Oliver Roche-Newton
................ 357.510: SE Bachelorseminar mit BachelorarbeitLuca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein
201FRST12: Freie Studienleistungen9,00
Datenstand: 17.12.2023