Klassencode bzw. LVA-Nummer und Titel | Lehrende(r) | W | ECTS | SSt. |
201PFFA18: Pflichtfächer | | | 132,00 | |
........ 201ALGE18: Algebra und Geometrie | | | 33,00 | |
................ TM1PBVOLIN1: VL Lineare Algebra und Analytische Geometrie 1 | B1 | | | 7,50 | 5,0 |
........................ 368.101: VO Lineare Algebra und Analytische Geometrie 1 | Manuel Kauers | | | |
................ TM1PBUELIN1: UE Lineare Algebra und Analytische Geometrie 1 | B1 | | | 3,00 | 2,0 |
........................ 368.107: UE Lineare Algebra und Analytische Geometrie 1 | Thomas Speckhofer; Manuel Kauers | | | |
........................ 368.002: UE Lineare Algebra und Analytische Geometrie 1 | Manuel Kauers; Georg Ehling | | | |
................ TM1PBVOLIN2: VL Lineare Algebra und Analytische Geometrie 2 | B1 | | | 7,50 | 5,0 |
................ TM1PBUELIN2: UE Lineare Algebra und Analytische Geometrie 2 | B1 | | | 3,00 | 2,0 |
................ 201ALGEADMV18: VL Algebra und Diskrete Mathematik | B2 | | | 4,50 | 3,0 |
................ 201ALGEADMU18: UE Algebra und Diskrete Mathematik | B2 | | | 1,50 | 1,0 |
................ 201ALGEGEOV18: VL Einführung in die Geometrie | B2 | | | 4,50 | 3,0 |
........................ 356.280: VL Einführung in die Geometrie Weitere Infos | Bert Jüttler | | | |
................ 201ALGEGEOU12: UE Einführung in die Geometrie | B2 | | | 1,50 | 1,0 |
........................ 356.289: UE Einführung in die Geometrie | Felix Scholz | | | |
........ 201ANLS18: Analysis | | | 39,00 | |
................ TM1PAVOANA1: VL Analysis 1 | B1 | | | 7,50 | 5,0 |
........................ 323.036: VO Analysis 1 Weitere Infos | Andreas Neubauer | | | |
................ TM1PAUEANA1: UE Analysis 1 | B1 | | | 3,00 | 2,0 |
........................ 323.037: UE Analysis 1 Weitere Infos | Roland Wagner | | | |
................ TM1PAVOANA2: VL Analysis 2 | B1 | | | 7,50 | 5,0 |
................ TM1PAUEANA2: UE Analysis 2 | B1 | | | 3,00 | 2,0 |
................ 201ANLSFANV18: VL Funktionalanalysis | B2 | | | 4,50 | 3,0 |
................ 201ANLSFANU18: UE Funktionalanalysis | B2 | | | 1,50 | 1,0 |
................ 201ANLSGD1V18: VL Gewöhnliche Differentialgleichungen und Dynamische Systeme | B2 | | | 4,50 | 3,0 |
........................ 326.106: VL Gewöhnliche Differentialgleichungen und Dynamische Systeme Weitere Infos | Josef Schicho | | | |
................ 201ANLSGD1U18: UE Gewöhnliche Differentialgleichungen und Dynamische Systeme | B2 | | | 1,50 | 1,0 |
........................ 326.107: UE Gewöhnliche Differentialgleichungen und Dynamische Systeme | Josef Schicho | | | |
................ TM1PAVOPDGL: VL Partielle Differentialgleichungen | B2 | | | 6,00 | 4,0 |
........ 201ATMA18: Arbeitstechniken der Mathematik | | | 16,50 | |
................ 201ATMAALMK18: KV Algorithmische Methoden | B1 | | | 3,00 | 2,0 |
................ 201ATMAAMNK18: KV Algorithmische Methoden in der Numerik | B1 | | | 3,00 | 2,0 |
................ TM1PGKVLOGA: KV Logik als Arbeitssprache | B1 | | | 3,00 | 2,0 |
........................ 326.048: KV Logik als Arbeitssprache Weitere Infos | Wolfgang Windsteiger | | | |
................ 201ATMAPR1K18: KV Programmierung 1 | B1 | | | 4,50 | 3,0 |
........................ 327.371: KV Programmierung 1 Weitere Infos | Helmut Gfrerer | | | |
................ 201ATMAPR2K18: KV Programmierung 2 | B1 | | | 3,00 | 2,0 |
........ 201COMA18: Computermathematik | | | 13,50 | |
................ 201COMAAUDV18: VL Algorithmen und Datenstrukturen | B2 | | | 3,00 | 2,0 |
........................ 326.102: VL Algorithmen und Datenstrukturen Weitere Infos | Carsten Schneider | | | |
................ 201COMAAKOV18: VL Algorithmische Kombinatorik | B2 | | | 3,00 | 2,0 |
................ 201COMACOLV18: VL Computational Logic | B2 | | | 3,00 | 2,0 |
........................ 326.010: VL Computational Logic Weitere Infos | Wolfgang Schreiner | | | |
................ 201COMACALV18: VL Computer Algebra | B3 | | | 3,00 | 2,0 |
........................ 326.105: VL Computer Algebra Weitere Infos | Carsten Schneider | | | |
................ 201COMACALU18: UE Computer Algebra | B3 | | | 1,50 | 1,0 |
........................ 326.031: UE Computer Algebra Weitere Infos | Günter Landsmann | | | |
........ 201NUOP18: Numerische Mathematik und Optimierung | | | 16,50 | |
................ 201NUOPNUAV18: VL Numerische Analysis | B2 | | | 3,00 | 2,0 |
........................ 327.001: VL Numerische Analysis Weitere Infos | Helmut Gfrerer | | | |
................ 201NUOPNUAU18: UE Numerische Analysis | B2 | | | 1,50 | 1,0 |
........................ 327.002: UE Numerische Analysis Weitere Infos | Michael Winkler | | | |
................ TM1PDVONPDG: VL Numerik Partieller Differentialgleichungen | B3 | | | 6,00 | 4,0 |
........................ 327.320: VO Numerik Partieller Differentialgleichungen | Stefan Takacs | | | |
................ 201NUOPOPTV18: VL Optimierung | B3 | | | 4,50 | 3,0 |
................ 201NUOPOPTU18: UE Optimierung | B3 | | | 1,50 | 1,0 |
........ 201STST18: Stochastik und Statistik | | | 13,50 | |
................ 201STSTMITV18: VL Maß- und Integrationstheorie | B2 | | | 3,00 | 2,0 |
........................ 369.101: VL Maß- und Integrationstheorie Weitere Infos | Evelyn Buckwar | | | |
................ 201STSTMITU18: UE Maß- und Integrationstheorie | B2 | | | 1,50 | 1,0 |
........................ 369.001: UE Maß- und Integrationstheorie Weitere Infos | Corinna Perchtold | | | |
................ 201STSTWTSV18: VL Wahrscheinlichkeitstheorie und Statistik | B2 | | | 6,00 | 4,0 |
................ 201STSTWTSU18: UE Wahrscheinlichkeitstheorie und Statistik | B2 | | | 3,00 | 2,0 |
201WAFA18: Wahlfächer Beachte Mindest- und Höchstgrenzen für ECTS, insbesondere in den Modellierungs-, Seminar-, Übungs- und Gender-Studies-Töpfen. | | | 30,00 | |
........ 201MAMO18: Mathematisches Modellieren | | | 6,00-9,00 | |
................ 201MAMOFMOV18: VL Formales Modellieren | | | 3,00 | 2,0 |
................ 201MAMOMMNV18: VL Mathematische Modelle in den Naturwissenschaften | | | 3,00 | 2,0 |
................ 201MAMOMMWV18: VL Mathematische Modelle in den Wirtschaftswissenschaften | | | 3,00 | 2,0 |
................ 201MAMOMMTV18: VL Mathematische Modelle in der Technik | | | 3,00 | 2,0 |
........................ 327.420: VL Mathematische Modelle in der Technik | Andreas Schafelner | | | |
................ 201MAMOWDMV18: VL Wissens- und Datenbasiertes Modellieren | | | 3,00 | 2,0 |
........ 201MASE18: Mathematische Seminare | | | 3,00-6,00 | |
................ 201MASEADMS23: SE Algebra and Discrete Mathematics | | W | 3,00 | 2,0 |
........................ 368.303: SE Algebra and Discrete Mathematics: Projektseminar Mathematische Talente | Georg Grasegger; Manuel Kauers | | | |
........................ 368.158: SE Algebra and Discrete Mathematics | Erhard Aichinger | | | |
........................ 368.000: SE Algebra and Discrete Mathematics: Research Seminar | Manuel Kauers | | | |
................ 201MASEANAS23: SE Analysis | | W | 3,00 | 2,0 |
........................ 324.158: SE Analysis: Funktionalanalysis | Paul Müller; Richard Lechner | | | |
................ 201MASEFMOU18: PS Formales Modellieren | | | 3,00 | 2,0 |
................ 201MASEFUAS23: SE Funktionalanalysis | | W | 3,00 | 2,0 |
................ 201MASEGEOS22: SE Geometry | | W | 3,00 | 2,0 |
........................ 356.300: SE Geometry: Recent Results in Computer Aided Geometric Design Weitere Infos | Bert Jüttler; Felix Scholz | | | |
................ 201MASEMMES22: SE Mathematical Methods in Engineering | | W | 3,00 | 2,0 |
........................ 323.008: SE Mathematical Methods in Engineering | Ronny Ramlau | | | |
................ 201MASEMIES22: SE Mathematical Methods in the Economic Sciences | | W | 3,00 | 2,0 |
................ 201MASEWISS23: SE Mathematical Modelling | | W | 3,00 | 2,0 |
........................ 357.507: SE Mathematical Modelling Weitere Infos | Luca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein | | | |
................ 201MASEMMNS23: SE Mathematische Methoden in den Naturwissenschaften | | W | 3,00 | 2,0 |
........................ 357.509: SE Mathematische Methoden in den Naturwissenschaften Weitere Infos | Luca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein | | | |
................ 201MASEMMNU18: PS Mathematische Modelle in den Naturwissenschaften | | | 3,00 | 2,0 |
................ 201MASEMMWU18: PS Mathematische Modelle in den Wirtschaftswissenschaften | | | 3,00 | 2,0 |
................ 201MASEMMTU18: PS Mathematische Modelle in der Technik | | | 3,00 | 2,0 |
........................ 327.421: PS Mathematische Modelle in der Technik | Andreas Schafelner | | | |
................ 201MASENTHS23: SE Number Theory | | W | 3,00 | 2,0 |
................ 201MASENUAS22: SE Numerical Analysis | | W | 3,00 | 2,0 |
........................ 327.014: SE Numerical Analysis: Methodenseminar | Herbert Egger; Helmut Gfrerer | | | |
........................ 327.006: SE Numerical Analysis: Forschungsseminar | Herbert Egger; Helmut Gfrerer | | | |
................ 201MASEOPTS22: SE Optimization | | W | 3,00 | 2,0 |
................ 201MASEPTMS22: SE Probability Theory and Mathematical Statistics | | W | 3,00 | 2,0 |
................ 201MASESYMS23: SE Symbolic Computation | | W | 3,00 | 2,0 |
........................ 326.063: SE Symbolic Computation: Projektseminar Formale Methoden und Automatisches Beweisen I Weitere Infos | Wolfgang Schreiner; Teimuraz Kutsia; Wolfgang Windsteiger | | | |
........................ 326.CA1: SE Symbolic Computation: Computer Algebra and Applications I Weitere Infos | Carsten Schneider | | | |
........................ 326.060: SE Symbolic Computation: Forschungsthemen in Algebra und Kombinatorik | Josef Schicho | | | |
................ 201MASEWDMU18: PS Wissens- und Datenbasiertes Modellieren | | | 3,00 | 2,0 |
........ 201UPDG18: Übungen zu Partiellen Differentialgleichungen | | | 3,00-6,00 | |
................ 201UPDGNPDU18: UE Numerik Partieller Differentialgleichungen | | | 3,00 | 2,0 |
........................ 327.321: UE Numerik Partieller Differentialgleichungen | Stefan Tyoler | | | |
................ 201UPDGPDGU18: UE Partielle Differentialgleichungen | | | 3,00 | 2,0 |
........ 201UCMA18: Übungen aus der Computermathematik | | | 1,50-4,50 | |
................ 201UCMAAUDU18: UE Algorithmen und Datenstrukturen | | | 1,50 | 1,0 |
........................ 326.103: UE Algorithmen und Datenstrukturen Weitere Infos | Ioana Cleopatra Pau | | | |
................ 201UCMAAKOU18: UE Algorithmische Kombinatorik | | | 1,50 | 1,0 |
................ 201UCMACOLU18: UE Computational Logic | | | 1,50 | 1,0 |
........................ 326.011: UE Computational Logic Weitere Infos | Nikolaj Popov | | | |
........ 201GEND18: Gender Studies | | | 3,00-6,00 | |
................ GS-TNE: KV Gender Studies TNF - Einführung | | | 3,00 | 2,0 |
........................ 536.021: KV Gender Studies TNF - Einführung: Technik und Geschlecht | Andrea Guttmann | | | |
........................ 536.008: KV Gender Studies TNF - Einführung: Technik und Geschlecht | Andrea Guttmann | | | |
................ GS-SK2: KV Gender Studies und soziale Kompetenz | | | 3,00 | 2,0 |
................ 201GENDSP2V12: VL Spezialvorlesung Gender Studies | | | 3,00 | 2,0 |
........ 201ANAS18: Analysis | | | 0,00-13,50 | |
................ 201ANASAN1V12: KO Analysis 1 | | | 0,00 | 2,0 |
........................ 327.307: KO Analysis 1 | Ewald Lindner | | | |
................ 201ANASAN2V12: KO Analysis 2 | | | 0,00 | 2,0 |
................ 404ANACCANV23: VL Complex Analysis | | | 4,50 | 3,0 |
................ 201ANASCANU23: UE Complex Analysis | | | 3,00 | 2,0 |
................ 404ANACDSCV23: VL Dynamical Systems and Chaos | | | 3,00 | 2,0 |
................ 201ANASDSCU22: UE Dynamical Systems and Chaos | | | 1,50 | 1,0 |
................ TM1WAVOFRAK: VL Fraktale | | | 3,00 | 2,0 |
................ TM1WAUEFRAK: UE Fraktale | | | 1,50 | 1,0 |
................ 403COEXIEBU22: UE Integral Equations and Boundary Value Problems | | | 1,50 | 1,0 |
........................ 323.007: UE Integral Equations and Boundary Value Problems Weitere Infos | Roland Wagner | | | |
................ 403MAMOIEBV22: VL Integral equations and boundary value problems | | | 6,00 | 4,0 |
........................ 323.006: VO Integral Equations and Boundary Value Problems | Ronny Ramlau; Simon Hubmer | | | |
................ TM1WAVOHARM: VL Klassische Harmonische Analysis | | | 3,00 | 2,0 |
................ TM1WAUEHARM: UE Klassische Harmonische Analysis | | | 1,50 | 1,0 |
................ 201ANASPOFV23: VL Pseudodifferential Operators and Fourier Integral Operators | | | 3,00 | 2,0 |
................ 201ANASPOFU22: UE Pseudodifferential Operators and Fourier Integral Operators | | | 1,50 | 1,0 |
................ 201ANASSIPV22: VL Singular Integrals and Potential Theory | | | 3,00 | 2,0 |
................ 201ANASSIPU22: UE Singular Integrals and Potential Theory | | | 1,50 | 1,0 |
................ 201ANASSP1V12: VL Spezialvorlesung Analysis (1,5 ECTS) | | W | 1,50 | 1,0 |
................ 201ANASSP2V12: VL Spezialvorlesung Analysis | | W | 3,00 | 2,0 |
........................ 324.122: VL Spezialvorlesung Analysis: Approximation theory for Machine Learning | Mario Ullrich | | | |
................ 201ANASSP1U12: UE Spezialvorlesung Analysis | | | 1,50 | 1,0 |
........ 201NUMA18: Numerische Mathematik | | | 0,00-13,50 | |
................ 403NUMACELV22: VL Computational Electromagnetics | | | 3,00 | 2,0 |
................ 403NUSINMEV22: VL Numerical Methods for Elliptic Equations | | | 6,00 | 4,0 |
................ 403COEXNMEU22: UE Numerical Methods for Elliptic Equations | | | 1,50 | 1,0 |
................ 403NUSINMCV22: VL Numerical Methods in Continuum Mechanics | | | 3,00 | 2,0 |
........................ 327.004: VO Numerical Methods in Continuum Mechanics | Herbert Egger | | | |
................ 201NUMANMCU22: UE Numerical Methods in Continuum Mechanics | | | 1,50 | 1,0 |
........................ 327.008: UE Numerical Methods in Continuum Mechanics | Herbert Egger | | | |
................ TM1WBVONKM2: VL Numerische Methoden der Kontinuumsmechanik 2 | | | 3,00 | 2,0 |
................ TM1WBUENKM2: UE Numerische Methoden der Kontinuumsmechanik 2 | | | 1,50 | 1,0 |
................ 201NUMASP1V22: VL Special Topics Numerical Analysis (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201NUMASP2V22: VL Special Topics Numerical Analysis | | W | 3,00 | 2,0 |
........................ 327.009: VL Special Topics Numerical Analysis: Monotone operators in nonlinear PDEs | Marvin Fritz | | | |
................ 201NUMASP1U22: UE Special Topics Numerical Analysis | | W | 1,50 | 1,0 |
........................ 327.007: UE Special Topics Numerical Analysis: Monotone operators in nonlinear PDEs | Marvin Fritz | | | |
........ 201WTMS18: Wahrscheinlichkeitstheorie und Mathematische Statistik | | | 0,00-13,50 | |
................ 201WTMSMACV22: VL Markov Chains | | | 3,00 | 2,0 |
................ 201WTMSMACU22: UE Markov Chains | | | 1,50 | 1,0 |
................ 201WTMSQUTV22: VL Queueing Theory | | | 3,00 | 2,0 |
................ 201WTMSQUTU22: UE Queueing Theory | | | 1,50 | 1,0 |
................ 201WTMSRETV22: VL Reliability Theory | | | 3,00 | 2,0 |
........................ 369.003: VO Reliability Theory: Einführung in Grundbegriffe, Methoden u. Probleme der Zuverlässigkeitsanalyse von techn. Systemen Weitere Infos | Dmitry Efrosinin | | | |
................ 201WTMSRETU22: UE Reliability Theory | | | 1,50 | 1,0 |
........................ 369.122: UE Reliability Theory Weitere Infos | Dmitry Efrosinin | | | |
................ 201WTMSSP1V22: VL Special Topics Probability Theory and Mathematical Statistics (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201WTMSSP2V22: VL Special Topics Probability Theory and Mathematical Statistics | | W | 3,00 | 2,0 |
........................ 369.008: VL Special Topics Probability Theory and Mathematical Statistics: Stochastische Numerik Weitere Infos | Evelyn Buckwar | | | |
................ 201WTMSSP1U22: UE Special Topics Probability Theory and Mathematical Statistics | | W | 1,50 | 1,0 |
................ 404MMMCSTMV23: VL Statistical Methods | | | 3,00 | 2,0 |
........................ 369.110: VO Statistical Methods Weitere Infos | Amira Meddah | | | |
................ 201WTMSSTMU22: UE Statistical Methods | | | 1,50 | 1,0 |
........................ 369.111: UE Statistical Methods Weitere Infos | Corinna Perchtold | | | |
................ 403PTMSSDEV22: VL Stochastic Differential Equations 2 | | | 3,00 | 2,0 |
................ 404STCCSDEV23: VL Stochastic Differential Equations | | | 4,50 | 3,0 |
................ 201WTMSSDEU22: UE Stochastic Differential Equations | | | 1,50 | 1,0 |
................ 403MAMOSTPV22: VL Stochastic Processes | | | 3,00 | 2,0 |
........................ 325.006: VO Stochastic Processes | Sascha Desmettre | | | |
................ 201WTMSSTPU22: UE Stochastic Processes | | | 1,50 | 1,0 |
........................ 325.007: UE Stochastic Processes | Sascha Desmettre | | | |
................ 201WTMSSTSV22: VL Stochastic Simulation | | | 3,00 | 2,0 |
................ 201WTMSSTSU22: UE Stochastic Simulation | | | 1,50 | 1,0 |
........ 201MMNW18: Mathematische Methoden in den Naturwissenschaften | | | 0,00-13,50 | |
................ 201MMNWSP1V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften (1,5 ECTS) | | | 1,50 | 1,0 |
................ 201MMNWSP2V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | | W | 3,00 | 2,0 |
................ 201MMNWSP1U12: UE Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | | W | 1,50 | 1,0 |
................ 404MMNSTPMV23: VL Theoretical physics for mathematicians | | | 6,00 | 4,0 |
................ 201MMNWTPMU23: UE Theoretical physics for mathematicians | | | 1,50 | 1,0 |
........ 201MMTK18: Mathematische Methoden in der Technik | | | 0,00-13,50 | |
................ 403MAMOINPV22: VL Inverse problems | | | 3,00 | 2,0 |
................ 201MMTKINPU23: UE Inverse problems | | | 1,50 | 1,0 |
................ 403COEXMMEU22: UE Mathematical Methods in Continuum Mechanics | | | 1,50 | 1,0 |
........................ 323.004: UE Mathematical Methods in Continuum Mechanics Weitere Infos | Roland Wagner | | | |
................ 201MMTKMMEV22: VL Mathematical Methods in Electrodynamics | | | 3,00 | 2,0 |
................ 201MMTKMMEU23: UE Mathematical Methods in Electrodynamics | | | 1,50 | 1,0 |
................ 403MAMOMMCV22: VL Mathematical methods in continuum mechanics | | | 6,00 | 4,0 |
........................ 323.003: VO Mathematical Methods in Continuum Mechanics | Stefan Kindermann | | | |
................ 201MMTKSP1V22: VL Special Topics Mathematical Methods in Engineering (1.5 ECTS) | | | 1,50 | 1,0 |
................ 201MMTKSP2V22: VL Special Topics Mathematical Methods in Engineering | | | 3,00 | 2,0 |
................ 201MMTKSP1U22: UE Special Topics Mathematical Methods in Engineering | | | 1,50 | 1,0 |
................ 404MMMCWFAV23: VL Wavelets – Functional Analytical Basics | | | 3,00 | 2,0 |
................ 404MMENWFAU23: UE Wavelets – Functional Analytical Basics | | | 1,50 | 1,0 |
........ 201MMWW18: Mathematische Methoden in den Wirtschaftswissenschaften | | | 0,00-13,50 | |
................ 403MAMOFIMV22: VL Financial Mathematics | | | 4,50 | 3,0 |
........................ 325.002: VO Financial Mathematics | Peter Kritzer | | | |
................ 201MMWWFIMV22: UE Financial Mathematics | | | 1,50 | 1,0 |
........................ 325.004: UE Financial Mathematics | Florian Aichinger | | | |
................ 404MAMCNLIV23: VL Non-Life Insurance Mathematics | | | 3,00 | 2,0 |
........................ 325.011: VL Non-Life Insurance Mathematics | Sascha Desmettre | | | |
................ 201MMWWSP1V22: VL Special Topics Mathematical Methods in the Economic Sciences (1.5 ECTS) | | | 1,50 | 1,0 |
................ 201MMWWSP2V22: VL Special Topics Mathematical Methods in the Economic Sciences | | W | 3,00 | 2,0 |
................ 201MMWWSP1U22: UE Special Topics Mathematical Methods in the Economic Sciences | | W | 1,50 | 1,0 |
........................ 325.009: UE Special Topics Mathematical Methods in the Economic Sciences: Non-life Insurance Mathematics | Sascha Desmettre | | | |
................ TM1WFVOVERS: VL Versicherungsmathematik | | | 3,00 | 2,0 |
........ 201OPTI18: Optimierung | | | 0,00-13,50 | |
................ 201OPTICOVV22: VL Calculus of Variation | | | 3,00 | 2,0 |
................ 201OPTICOVU22: UE Calculus of Variation | | | 1,50 | 1,0 |
................ 201OPTISP1V22: VL Special Topics Optimization (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201OPTISP2V22: VL Special Topics Optimization | | W | 3,00 | 2,0 |
................ 201OPTISP1U22: UE Special Topics Optimization | | W | 1,50 | 1,0 |
........ 201SYMR18: Symbolisches Rechnen | | | 0,00-13,50 | |
................ 404ALBRALVC23: VL Algebraic Combinatorics | | | 3,00 | 2,0 |
........................ 326.030: VL Algebraic Combinatorics Weitere Infos | Silviu Radu; Veronika Pillwein | | | |
................ 201SYMRACOU20: UE Algebraic combinatorics | | | 1,50 | 1,0 |
........................ 326.101: UE Algebraic combinatorics Weitere Infos | Koustav Banerjee | | | |
................ 404SLOCAURV23: VL Automated Reasoning | | | 4,50 | 3,0 |
................ 201SYMBAURU23: UE Automated Reasoning | | | 1,50 | 1,0 |
................ 404GEOCCAAV23: VL Commutative algebra and algebraic geometry | | | 3,00 | 2,0 |
........................ 326.0KA: VL Commutative Algebra and Algebraic Geometry Weitere Infos | Josef Schicho | | | |
................ 201SYMRCAGU20: UE Commutative algebra and algebraic geometry | | | 1,50 | 1,0 |
................ 201SYMBCTHV23: VL Computability theory | | | 3,00 | 2,0 |
................ 201SYMBDAAV23: VL Design and Analysis of Algorithms | | | 3,00 | 2,0 |
........................ 326.0D1: VL Design and Analysis of Algorithms Weitere Infos | Ioana Cleopatra Pau | | | |
................ 921SOENFMSK13: KV Formal Methods in Software Development | | | 4,50 | 3,0 |
........................ 326.013: KV Formal Methods in Software Development Weitere Infos | Wolfgang Schreiner | | | |
................ 201SYMBFPLV23: VL Formal Semantics of Programming Languages | | | 3,00 | 2,0 |
................ 201SYMBIPDV23: VL Introduction to parallel and distributed computing | | | 3,00 | 2,0 |
................ 404SLOCMALV23: VL Mathematical Logic | | | 3,00 | 2,0 |
................ 201SYMBML1U23: UE Mathematical logic | | | 1,50 | 1,0 |
................ 404PCSDPSTK20: KV Practical Software Technology | | | 4,50 | 3,0 |
................ 201SYMBPLSK23: KV Practical in Symbolic Computation | | W | 3,00 | 2,0 |
........................ 326.121: KV Practical in Symbolic Computation: Logic programming Weitere Infos | Teimuraz Kutsia | | | |
................ 201SYMRPSRK20: KV Programming project symbolic computation | | W | 3,00 | 2,0 |
................ 201SYMBRCLV23: VL Rewriting in Computer Science and Logic | | | 3,00 | 2,0 |
................ 201SYMRSF2V20: VL Special Functions and Symbolic Summation | | | 3,00 | 2,0 |
................ 201SYMRSF2U21: UE Special Functions and Symbolic Summation | | | 1,50 | 1,0 |
................ 201SYMRSP1V20: VL Special Topics symbolic computation (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201SYMRSP2V20: VL Special Topics symbolic computation | | W | 3,00 | 2,0 |
........................ 326.00E: VL Special Topics symbolic computation: Formale Sprachen und formale Grammatiken II Weitere Infos | Nikolaj Popov | | | |
................ 201SYMRSP2U20: UE Special Topics symbolic computation | | W | 1,50 | 1,0 |
................ 404CANCSSIV23: VL Symbolic Summation and Integration | | | 4,50 | 3,0 |
........................ 326.079: VL Symbolic Summation and Integration Weitere Infos | Carsten Schneider | | | |
................ 201SYMRSSIU23: UE Symbolic Summation and Integration | | | 1,50 | 1,0 |
................ TM1WIVOTHSW: VL Thinking, Speaking, Writing | | W | 3,00 | 2,0 |
........................ 326.057: VO Thinking, Speaking, Writing: Understanding and Creating Mathematical Proofs Weitere Infos | Silviu Radu | | | |
........ 201ADMA18: Algebra und Diskrete Mathematik | | | 0,00-13,50 | |
................ 404CANCACAV23: VL Advanced Computer Algebra | | | 3,00 | 2,0 |
................ 201ADMAACAU23: UE Advanced Computer Algebra | | | 1,50 | 1,0 |
................ 404ALBRALGV23: VL Algebra | | | 6,00 | 4,0 |
................ 201ADMAALGU20: UE Algebra | | | 1,50 | 1,0 |
................ 404ALBRDEMV23: VL Discrete Mathematics | | | 3,00 | 2,0 |
................ 201ADMADEMU23: UE Discrete Mathematics | | | 1,50 | 1,0 |
................ 201ADMAGRBV20: VL Groebner Bases | | | 3,00 | 2,0 |
................ 201ADMALA1V12: KO Lineare Algebra und Analytische Geometrie 1 | | | 0,00 | 2,0 |
........................ 368.105: KO Lineare Algebra und Analytische Geometrie 1 | Georg Ehling; Thomas Speckhofer | | | |
................ 201ADMALA2V12: KO Lineare Algebra und Analytische Geometrie 2 | | | 0,00 | 2,0 |
................ 201ADMASP1V20: VL Special Topics algebra and discrete mathematics (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201ADMASP2V20: VL Special Topics algebra and discrete mathematics | | W | 3,00 | 2,0 |
........................ 368.157: VL Special Topics algebra and discrete mathematics: Universal Algebra Weitere Infos | Erhard Aichinger | | | |
................ 201ADMASP1U20: UE Special Topics algebra and discrete mathematics | | W | 1,50 | 1,0 |
........ 201FUAN18: Funktionalanalysis | | | 0,00-13,50 | |
................ TM1WKVODIST: VL Distributionen und lokalkonvexe Räume | | W | 3,00 | 2,0 |
........................ 324.139: VO Distributionen und lokalkonvexe Räume | Richard Lechner | | | |
................ TM1WKUEDIST: UE Distributionen und lokalkonvexe Räume | | W | 1,50 | 1,0 |
................ TM1WKVOERGO: VL Ergodentheorie | | | 3,00 | 2,0 |
................ TM1WKUEERGO: UE Ergodentheorie | | | 1,50 | 1,0 |
................ TM1WKVOOPER: VL Operatorentheorie | | | 3,00 | 2,0 |
................ TM1WKUEOPER: UE Operatorentheorie | | | 1,50 | 1,0 |
................ TM1WKVOSOBO: VL Sobolev-Räume | | W | 3,00 | 2,0 |
........................ 324.171: VO Sobolev-Räume Weitere Infos | Paul Müller | | | |
................ TM1WKUESOBO: UE Sobolev-Räume | | | 1,50 | 1,0 |
................ 404ANACSTDV23: VL Spectral theory and distributions | | | 4,50 | 3,0 |
................ 201FUANSTDU23: UE Spectral theory and distributions | | | 3,00 | 2,0 |
................ 201FUANSP1V12: VL Spezialvorlesung Funktionalanalysis (1,5 ECTS) | | W | 1,50 | 1,0 |
................ 201FUANSP2V12: VL Spezialvorlesung Funktionalanalysis | | W | 3,00 | 2,0 |
........................ 324.220: VL Spezialvorlesung Funktionalanalysis: Compressed sensing Weitere Infos | David Krieg | | | |
................ 201FUANSP1U12: UE Spezialvorlesung Funktionalanalysis | | W | 1,50 | 1,0 |
........ 201GEOM18: Geometrie | | | 0,00-13,50 | |
................ 404GEOCCOGV23: VL Computational Geometry | | | 3,00 | 2,0 |
................ 201GEOMCOGU14: UE Computational Geometry | | | 1,50 | 1,0 |
................ 404GEOCCGDV23: VL Computer-aided geometric design | | | 3,00 | 2,0 |
................ TM1WLUECAGD: UE Computer-aided geometric design | | | 1,50 | 1,0 |
................ 404GEOCDGEV23: VL Differential Geometry | | | 3,00 | 2,0 |
........................ 356.004: VO Differential Geometry Weitere Infos | Bert Jüttler | | | |
................ 201GEOMDGEU22: UE Differential Geometry | | | 1,50 | 1,0 |
........................ 356.003: UE Differential Geometry | Sofia Trautner | | | |
................ TM1WLVOTOPO: VL Einführung in die Topologie | | | 3,00 | 2,0 |
................ TM1WLUETOPO: UE Einführung in die Topologie | | | 1,50 | 1,0 |
................ TM1WLVOHDGE: VL Höhere Differentialgeometrie | | | 3,00 | 2,0 |
................ TM1WLUEHDGE: UE Höhere Differentialgeometrie | | | 1,50 | 1,0 |
................ TM1WLVOHTOP: VL Höhere Topologie | | | 3,00 | 2,0 |
................ TM1WLUEHTOP: UE Höhere Topologie | | | 1,50 | 1,0 |
................ 201GEOMSP1V22: VL Special Topics Geometry (1.5 ECTS) | | W | 1,50 | 1,0 |
................ 201GEOMSP2V22: VL Special Topics Geometry | | W | 3,00 | 2,0 |
................ 201GEOMSP1U22: UE Special Topics Geometry | | W | 1,50 | 1,0 |
................ TM1WLVOSPLI: VL Splines | | | 3,00 | 2,0 |
................ TM1WLUESPLI: UE Splines | | | 1,50 | 1,0 |
........ 201WIMS18: Wissensbasierte mathematische Systeme | | | 0,00-13,50 | |
................ 201WIMSFUSV18: VL Fuzzy Systems | | | 3,00 | 2,0 |
........................ 357.402: VL Fuzzy Systems Weitere Infos | Susanne Saminger-Platz | | | |
................ 201WIMSFUSU18: UE Fuzzy Systems | | | 1,50 | 1,0 |
........................ 357.403: UE Fuzzy Systems Weitere Infos | Susanne Saminger-Platz | | | |
................ 201WIMSMVLV23: VL Manyvalued Logic | | | 3,00 | 2,0 |
........................ 357.600: VL Manyvalued Logic Weitere Infos | Stefano Fioravanti | | | |
................ 201WIMSMVLU20: UE Manyvalued Logic | | | 1,50 | 1,0 |
........................ 357.601: UE Manyvalued Logic Weitere Infos | Stefano Fioravanti | | | |
................ 404KBMSPKBK20: KV Practical Knowledge-Based Systems | | | 3,00 | 2,0 |
................ 201WIMSSP1V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme (1,5 ECTS) | | W | 1,50 | 1,0 |
................ 201WIMSSP2V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme | | W | 3,00 | 2,0 |
................ 201WIMSSP1U12: UE Spezialvorlesung Wissensbasierte mathematische Systeme | | W | 1,50 | 1,0 |
........ 201ZATH18: Zahlentheorie | | | 0,00-13,50 | |
................ 201ZATHANTV23: VL Applied Number Theory | | | 3,00 | 2,0 |
........................ 325.005: VL Applied Number Theory | Arne Winterhof | | | |
................ 201ZATHANTU20: UE Applied Number Theory | | | 1,50 | 1,0 |
................ 201ZATHCRGV20: VL Cryptography | | | 3,00 | 2,0 |
................ 201ZATHCRGU20: UE Cryptography | | | 1,50 | 1,0 |
................ 201ZAHLEKOV20: VL Einführung in die Kombinatorik | | | 3,00 | 2,0 |
................ 201ZATHEZTV20: VL Einführung in die Zahlentheorie | | | 3,00 | 2,0 |
................ 201ZATHEZTU20: UE Einführung in die Zahlentheorie | | | 1,50 | 1,0 |
................ 404CANCNUTV23: VL Number Theory | | | 4,50 | 3,0 |
................ 201ZATHNTHU23: UE Number Theory | | | 1,50 | 1,0 |
................ 201ZATHNMNV22: VL Number-theoretic Methods in Numerical Analysis | | W | 3,00 | 2,0 |
................ 201ZATHNMNU22: UE Number-theoretic Methods in Numerical Analysis | | | 1,50 | 1,0 |
................ 201ZATHSP1V20: VL Special Topics Number theory (1,5 ECTS) | | W | 1,50 | 1,0 |
................ 201ZATHSP2V20: VL Special Topics Number theory | | W | 3,00 | 2,0 |
................ 201ZATHSP1U20: UE Special Topics Number theory | | W | 1,50 | 1,0 |
........ 201EMAA12: Ethik in der Mathematik und ihren Anwendungen | | | 0,00-3,00 | |
................ TM1WOKVETHI: KV Ethik in der Mathematik und ihren Anwendungen | | | 3,00 | 2,0 |
201BAAR18: Bachelorarbeit | | | 9,00 | |
........ 201BAARBASS18: SE Bachelorseminar mit Bachelorarbeit | | | 9,00 | 2,0 |
................ 324.112: SE Bachelorseminar mit Bachelorarbeit Weitere Infos | Michael Schmuckenschläger | | | |
................ 325.001: SE Bachelorseminar mit Bachelorarbeit | Gerhard Larcher | | | |
................ 327.003: SE Bachelorseminar mit Bachelorarbeit | Helmut Gfrerer; Herbert Egger; Stefan Takacs | | | |
................ 356.320: SE Bachelorseminar mit Bachelorarbeit | Bert Jüttler | | | |
................ 368.161: SE Bachelorseminar mit Bachelorarbeit | Manuel Kauers; Erhard Aichinger; Peter Fuchs; Oliver Roche-Newton | | | |
................ 357.510: SE Bachelorseminar mit Bachelorarbeit | Luca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein | | | |
201FRST12: Freie Studienleistungen | | | 9,00 | |
Datenstand: 17.12.2023