Die dunkel hinterlegten Zellen sind dem Studienhandbuch entnommen; die alphanumerischen Klassencodes aus dem Studienhandbuch geben die Stellung der LVA im Curriculum an. Die hell hinerlegten Zellen geben die angebotenen LVAs im Semester 2023s laut KUSSS wieder; diese sind durch die LVA-Nummer identifiziert. | [Nur angebotene LVAs anzeigen] |
Klassencode bzw. LVA-Nummer und Titel | Lehrende(r) | W | ECTS | SSt. | |
---|---|---|---|---|---|
201PFFA18: Pflichtfächer | 132,00 | ||||
........ 201ALGE18: Algebra und Geometrie | 33,00 | ||||
................ TM1PBVOLIN1: VL Lineare Algebra und Analytische Geometrie 1 | B1 | 7,50 | 5,0 | ||
................ TM1PBUELIN1: UE Lineare Algebra und Analytische Geometrie 1 | B1 | 3,00 | 2,0 | ||
................ TM1PBVOLIN2: VL Lineare Algebra und Analytische Geometrie 2 | B1 | 7,50 | 5,0 | ||
........................ 368.102: VO Lineare Algebra und Analytische Geometrie 2 | Manuel Kauers | ||||
................ TM1PBUELIN2: UE Lineare Algebra und Analytische Geometrie 2 | B1 | 3,00 | 2,0 | ||
........................ 368.104: UE Lineare Algebra und Analytische Geometrie 2 | Peter Fuchs | ||||
................ 201ALGEADMV18: VL Algebra und Diskrete Mathematik | B2 | 4,50 | 3,0 | ||
........................ 368.170: VL Algebra und Diskrete Mathematik | Erhard Aichinger | ||||
................ 201ALGEADMU18: UE Algebra und Diskrete Mathematik | B2 | 1,50 | 1,0 | ||
........................ 368.171: UE Algebra und Diskrete Mathematik | Peter Fuchs | ||||
................ 201ALGEGEOV18: VL Einführung in die Geometrie | B2 | 4,50 | 3,0 | ||
................ 201ALGEGEOU12: UE Einführung in die Geometrie | B2 | 1,50 | 1,0 | ||
........ 201ANLS18: Analysis | 39,00 | ||||
................ TM1PAVOANA1: VL Analysis 1 | B1 | 7,50 | 5,0 | ||
................ TM1PAUEANA1: UE Analysis 1 | B1 | 3,00 | 2,0 | ||
................ TM1PAVOANA2: VL Analysis 2 | B1 | 7,50 | 5,0 | ||
........................ 323.004: VO Analysis 2 Weitere Infos | Andreas Neubauer | ||||
................ TM1PAUEANA2: UE Analysis 2 | B1 | 3,00 | 2,0 | ||
........................ 323.006: UE Analysis 2 Weitere Infos | Andreas Neubauer | ||||
................ 201ANLSFANV18: VL Funktionalanalysis | B2 | 4,50 | 3,0 | ||
........................ 324.101: VL Funktionalanalysis | Richard Lechner | ||||
................ 201ANLSFANU18: UE Funktionalanalysis | B2 | 1,50 | 1,0 | ||
........................ 324.102: UE Funktionalanalysis | Richard Lechner | ||||
................ 201ANLSGD1V18: VL Gewöhnliche Differentialgleichungen und Dynamische Systeme | B2 | 4,50 | 3,0 | ||
................ 201ANLSGD1U18: UE Gewöhnliche Differentialgleichungen und Dynamische Systeme | B2 | 1,50 | 1,0 | ||
................ TM1PAVOPDGL: VL Partielle Differentialgleichungen | B2 | 6,00 | 4,0 | ||
........................ 323.020: VO Partielle Differentialgleichungen | Stefan Kindermann | ||||
........ 201ATMA18: Arbeitstechniken der Mathematik | 16,50 | ||||
................ 201ATMAALMK18: KV Algorithmische Methoden | B1 | 3,00 | 2,0 | ||
........................ 326.003: KV Algorithmische Methoden Weitere Infos | Wolfgang Windsteiger | ||||
................ 201ATMAAMNK18: KV Algorithmische Methoden in der Numerik | B1 | 3,00 | 2,0 | ||
........................ 327.002: KV Algorithmische Methoden in der Numerik Weitere Infos | Helmut Gfrerer | ||||
................ TM1PGKVLOGA: KV Logik als Arbeitssprache | B1 | 3,00 | 2,0 | ||
................ 201ATMAPR1K18: KV Programmierung 1 | B1 | 4,50 | 3,0 | ||
................ 201ATMAPR2K18: KV Programmierung 2 | B1 | 3,00 | 2,0 | ||
........................ 326.005: KV Programmierung 2 Weitere Infos | Wolfgang Schreiner | ||||
........ 201COMA18: Computermathematik | 13,50 | ||||
................ 201COMAAUDV18: VL Algorithmen und Datenstrukturen | B2 | 3,00 | 2,0 | ||
................ 201COMAAKOV18: VL Algorithmische Kombinatorik | B2 | 3,00 | 2,0 | ||
........................ 326.001: VL Algorithmische Kombinatorik Weitere Infos | Veronika Elisabeth Pillwein | ||||
................ 201COMACOLV18: VL Computational Logic | B2 | 3,00 | 2,0 | ||
................ 201COMACALV18: VL Computer Algebra | B3 | 3,00 | 2,0 | ||
................ 201COMACALU18: UE Computer Algebra | B3 | 1,50 | 1,0 | ||
........ 201NUOP18: Numerische Mathematik und Optimierung | 16,50 | ||||
................ 201NUOPNUAV18: VL Numerische Analysis | B2 | 3,00 | 2,0 | ||
................ 201NUOPNUAU18: UE Numerische Analysis | B2 | 1,50 | 1,0 | ||
................ TM1PDVONPDG: VL Numerik Partieller Differentialgleichungen | B3 | 6,00 | 4,0 | ||
................ 201NUOPOPTV18: VL Optimierung | B3 | 4,50 | 3,0 | ||
........................ 327.001: VL Optimierung Weitere Infos | Helmut Gfrerer | ||||
................ 201NUOPOPTU18: UE Optimierung | B3 | 1,50 | 1,0 | ||
........................ 327.007: UE Optimierung Weitere Infos | Helmut Gfrerer | ||||
........ 201STST18: Stochastik und Statistik | 13,50 | ||||
................ 201STSTMITV18: VL Maß- und Integrationstheorie | B2 | 3,00 | 2,0 | ||
................ 201STSTMITU18: UE Maß- und Integrationstheorie | B2 | 1,50 | 1,0 | ||
................ 201STSTWTSV18: VL Wahrscheinlichkeitstheorie und Statistik | B2 | 6,00 | 4,0 | ||
........................ 325.007: VL Wahrscheinlichkeitstheorie und Statistik Weitere Infos | Sascha Desmettre | ||||
................ 201STSTWTSU18: UE Wahrscheinlichkeitstheorie und Statistik | B2 | 3,00 | 2,0 | ||
........................ 325.008: UE Wahrscheinlichkeitstheorie und Statistik | Florian Aichinger | ||||
201WAFA18: Wahlfächer Beachte Mindest- und Höchstgrenzen für ECTS, insbesondere in den Modellierungs-, Seminar-, Übungs- und Gender-Studies-Töpfen. | 30,00 | ||||
........ 201MAMO18: Mathematisches Modellieren | 6,00-9,00 | ||||
................ 201MAMOFMOV18: VL Formales Modellieren | 3,00 | 2,0 | |||
................ 201MAMOMMNV18: VL Mathematische Modelle in den Naturwissenschaften | 3,00 | 2,0 | |||
........................ 324.110: VL Mathematische Modelle in den Naturwissenschaften Weitere Infos | Michael Schmuckenschläger | ||||
................ 201MAMOMMWV18: VL Mathematische Modelle in den Wirtschaftswissenschaften | 3,00 | 2,0 | |||
........................ 325.001: VL Mathematische Modelle in den Wirtschaftswissenschaften Weitere Infos | Gerhard Larcher | ||||
................ 201MAMOMMTV18: VL Mathematische Modelle in der Technik | 3,00 | 2,0 | |||
................ 201MAMOWDMV18: VL Wissens- und Datenbasiertes Modellieren | 3,00 | 2,0 | |||
........................ 357.410: VL Wissens- und Datenbasiertes Modellieren Weitere Infos | Werner Zellinger | ||||
........ 201MASE18: Mathematische Seminare | 3,00-6,00 | ||||
................ 201MASEFMOU18: PS Formales Modellieren | 3,00 | 2,0 | |||
................ 201MASEGEOS22: SE Geometry | W | 3,00 | 2,0 | ||
........................ 356.300: SE Geometry: Recent Results in Computer Aided Geometric Design Weitere Infos | Bert Jüttler; Lisa Groiss | ||||
................ 201MASEMMES22: SE Mathematical Methods in Engineering | W | 3,00 | 2,0 | ||
........................ 323.008: SE Mathematical Methods in Engineering | Ronny Ramlau | ||||
................ 201MASEMIES22: SE Mathematical Methods in the Economic Sciences | W | 3,00 | 2,0 | ||
................ 201MASEMMNU18: PS Mathematische Modelle in den Naturwissenschaften | 3,00 | 2,0 | |||
........................ 324.111: PS Mathematische Modelle in den Naturwissenschaften Weitere Infos | Michael Schmuckenschläger | ||||
................ 201MASEMMWU18: PS Mathematische Modelle in den Wirtschaftswissenschaften | 3,00 | 2,0 | |||
........................ 325.002: PS Mathematische Modelle in den Wirtschaftswissenschaften Weitere Infos | Gerhard Larcher | ||||
................ 201MASEMMTU18: PS Mathematische Modelle in der Technik | 3,00 | 2,0 | |||
................ 201MASENUAS22: SE Numerical Analysis | W | 3,00 | 2,0 | ||
........................ 327.006: SE Numerical Analysis: Forschungsseminar | Herbert Egger; Helmut Gfrerer | ||||
........................ 327.014: SE Numerical Analysis: Fractional differential equations | Luca Gerardo-Giorda; Marvin Fritz | ||||
........................ 327.018: SE Numerical Analysis: Electric Machine Simulation | Herbert Egger | ||||
................ 201MASEOPTS22: SE Optimization | W | 3,00 | 2,0 | ||
................ 201MASEPTMS22: SE Probability Theory and Mathematical Statistics | W | 3,00 | 2,0 | ||
................ 201MASEANAS18: SE Seminar Analysis | W | 3,00 | 2,0 | ||
........................ 324.158: SE Seminar Analysis: Spektraltheorie | Paul Müller; Richard Lechner; Markus Passenbrunner | ||||
........................ 324.117: SE Seminar Analysis: Optimal recovery with function values | Mario Ullrich | ||||
................ 201MASEFUAS18: SE Seminar Funktionalanalysis | W | 3,00 | 2,0 | ||
................ 201MASEMMNS18: SE Seminar Mathematische Methoden in den Naturwissenschaften | W | 3,00 | 2,0 | ||
................ 201MASENTHS20: SE Seminar Number theory | W | 3,00 | 2,0 | ||
................ 201MASEWISS18: SE Seminar Wissensbasierte mathematische Systeme | W | 3,00 | 2,0 | ||
........................ 357.507: SE Seminar Wissensbasierte mathematische Systeme Weitere Infos | Luca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein | ||||
................ 201MASEADMS20: SE Seminar algebra and discrete mathematics | W | 3,00 | 2,0 | ||
........................ 368.000: SE Seminar algebra and discrete mathematics: Research Seminar | Erhard Aichinger; Manuel Kauers | ||||
................ 201MASELSDS20: SE Seminar logic and software design | W | 3,00 | 2,0 | ||
........................ 326.099: SE Seminar logic and software design: Projektseminar Formale Methoden und automatisches Beweisen II Weitere Infos | Wolfgang Schreiner; Teimuraz Kutsia; Wolfgang Windsteiger | ||||
................ 201MASESYMS20: SE Seminar symbolic computation | W | 3,00 | 2,0 | ||
........................ 326.0CA: SE Seminar symbolic computation: Computer-Algebra II Weitere Infos | Carsten Schneider | ||||
........................ 326.096: SE Seminar symbolic computation: Projektseminar Algorithmische Kombinatorik II Weitere Infos | Peter Paule | ||||
........................ 326.060: SE Seminar symbolic computation: Geschichte und Philosophie der Mathematik | Josef Schicho | ||||
................ 201MASEWDMU18: PS Wissens- und Datenbasiertes Modellieren | 3,00 | 2,0 | |||
........................ 357.411: PS Wissens- und Datenbasiertes Modellieren Weitere Infos | Werner Zellinger | ||||
........ 201UPDG18: Übungen zu Partiellen Differentialgleichungen | 3,00-6,00 | ||||
................ 201UPDGNPDU18: UE Numerik Partieller Differentialgleichungen | 3,00 | 2,0 | |||
................ 201UPDGPDGU18: UE Partielle Differentialgleichungen | 3,00 | 2,0 | |||
........................ 323.111: UE Partielle Differentialgleichungen Weitere Infos | Roland Wagner | ||||
........ 201UCMA18: Übungen aus der Computermathematik | 1,50-4,50 | ||||
................ 201UCMAAUDU18: UE Algorithmen und Datenstrukturen | 1,50 | 1,0 | |||
................ 201UCMAAKOU18: UE Algorithmische Kombinatorik | 1,50 | 1,0 | |||
........................ 326.002: UE Algorithmische Kombinatorik | Philipp Nuspl | ||||
................ 201UCMACOLU18: UE Computational Logic | 1,50 | 1,0 | |||
........ 201GEND18: Gender Studies | 3,00-6,00 | ||||
................ GS-TNE: KV Gender Studies TNF - Einführung | 3,00 | 2,0 | |||
........................ 536.008: KV Gender Studies TNF - Einführung: Technik und Geschlecht | Andrea Guttmann | ||||
................ GS-SK2: KV Gender Studies und soziale Kompetenz | 3,00 | 2,0 | |||
........................ 536.035: KV Gender Studies und Soziale Kompetenz | Andrea Guttmann | ||||
................ 201GENDSP2V12: VL Spezialvorlesung Gender Studies | 3,00 | 2,0 | |||
........ 201ANAS18: a. Analysis | 0,00-13,50 | ||||
................ 201ANASAN1V12: KO Analysis 1 | 0,00 | 2,0 | |||
................ 201ANASAN2V12: KO Analysis 2 | 0,00 | 2,0 | |||
........................ 327.011: KO Analysis 2 | Ewald Lindner | ||||
................ 402MMPHDSCV22: VL Dynamical Systems and Chaos | 3,00 | 2,0 | |||
................ 201ANASDSCU22: UE Dynamical Systems and Chaos | 1,50 | 1,0 | |||
................ TM1WAVOFRAK: VL Fraktale | 3,00 | 2,0 | |||
................ TM1WAUEFRAK: UE Fraktale | 1,50 | 1,0 | |||
................ TMAPAVOFUNK: VL Funktionentheorie | 6,00 | 4,0 | |||
................ TM1WAUEFUNK: UE Funktionentheorie | 3,00 | 2,0 | |||
................ 403COEXIEBU22: UE Integral Equations and Boundary Value Problems | 1,50 | 1,0 | |||
................ 403MAMOIEBV22: VL Integral equations and boundary value problems | 6,00 | 4,0 | |||
................ TM1WAVOHARM: VL Klassische Harmonische Analysis | 3,00 | 2,0 | |||
................ TM1WAUEHARM: UE Klassische Harmonische Analysis | 1,50 | 1,0 | |||
................ 402MMPHPOFV22: VL Pseudodifferential Operators and Fourier Integral Operators | 3,00 | 2,0 | |||
................ 201ANASPOFU22: UE Pseudodifferential Operators and Fourier Integral Operators | 1,50 | 1,0 | |||
................ 201ANASSIPV22: VL Singular Integrals and Potential Theory | 3,00 | 2,0 | |||
........................ 324.126: VO Singular Integrals and Potential Theory | Paul Müller | ||||
................ 201ANASSIPU22: UE Singular Integrals and Potential Theory | 1,50 | 1,0 | |||
........................ 324.127: UE Singular Integrals and Potential Theory | Paul Müller | ||||
................ 201ANASSP1V12: VL Spezialvorlesung Analysis (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201ANASSP2V12: VL Spezialvorlesung Analysis | W | 3,00 | 2,0 | ||
................ 201ANASSP1U12: UE Spezialvorlesung Analysis | 1,50 | 1,0 | |||
........ 201NUMA18: b. Numerische Mathematik | 0,00-13,50 | ||||
................ 403NUSINMEV22: VL Numerical Methods for Elliptic Equations | 6,00 | 4,0 | |||
........................ 327.003: VO Numerical Methods for Elliptic Equations | Stefan Takacs | ||||
................ 403COEXNMEU22: UE Numerical Methods for Elliptic Equations | 1,50 | 1,0 | |||
........................ 327.004: UE Numerical Methods for Elliptic Equations | Andreas Schafelner | ||||
................ 403NUSINMCV22: VL Numerical Methods in Continuum Mechanics | 3,00 | 2,0 | |||
................ 201NUMANMCU22: UE Numerical Methods in Continuum Mechanics | 1,50 | 1,0 | |||
................ TM1WBVONKM2: VL Numerische Methoden der Kontinuumsmechanik 2 | 3,00 | 2,0 | |||
................ TM1WBUENKM2: UE Numerische Methoden der Kontinuumsmechanik 2 | 1,50 | 1,0 | |||
................ 201NUMASP1V22: VL Special Topics Numerical Analysis (1.5 ECTS) | W | 1,50 | 1,0 | ||
................ 201NUMASP2V22: VL Special Topics Numerical Analysis | W | 3,00 | 2,0 | ||
........................ 327.024: VL Special Topics Numerical Analysis: Multigrid Methods | Andreas Schafelner | ||||
................ 201NUMASP1U22: UE Special Topics Numerical Analysis | W | 1,50 | 1,0 | ||
........................ 327.015: UE Special Topics Numerical Analysis: Multigrid Methods | Andreas Schafelner | ||||
........ 201WTMS18: c. Wahrscheinlichkeitstheorie und Mathematische Statistik | 0,00-13,50 | ||||
................ 201WTMSMACV22: VL Markov Chains | 3,00 | 2,0 | |||
........................ 369.124: VO Markov Chains Weitere Infos | Dmitry Efrosinin | ||||
................ 201WTMSMACU22: UE Markov Chains | 1,50 | 1,0 | |||
........................ 369.001: UE Markov Chains Weitere Infos | Dmitry Efrosinin | ||||
................ 201WTMSQUTV22: VL Queueing Theory | 3,00 | 2,0 | |||
................ 201WTMSQUTU22: UE Queueing Theory | 1,50 | 1,0 | |||
................ 201WTMSRETV22: VL Reliability Theory | 3,00 | 2,0 | |||
................ 201WTMSRETU22: UE Reliability Theory | 1,50 | 1,0 | |||
................ 201WTMSSP1V22: VL Special Topics Probability Theory and Mathematical Statistics (1.5 ECTS) | W | 1,50 | 1,0 | ||
................ 201WTMSSP2V22: VL Special Topics Probability Theory and Mathematical Statistics | W | 3,00 | 2,0 | ||
................ 201WTMSSP1U22: UE Special Topics Probability Theory and Mathematical Statistics | W | 1,50 | 1,0 | ||
................ 402STMESTMV22: VL Statistical Methods | 3,00 | 2,0 | |||
................ 201WTMSSTMU22: UE Statistical Methods | 1,50 | 1,0 | |||
................ 402STMESDEV22: VL Stochastic Differential Equations | 3,00 | 2,0 | |||
........................ 369.006: VO Stochastic Differential Equations Weitere Infos | Evelyn Buckwar | ||||
................ 201WTMSSDEU22: UE Stochastic Differential Equations | 1,50 | 1,0 | |||
........................ 369.005: UE Stochastic Differential Equations | Devika Khurana | ||||
................ 403MAMOSTPV22: VL Stochastic Processes | 3,00 | 2,0 | |||
................ 201WTMSSTPU22: UE Stochastic Processes | 1,50 | 1,0 | |||
................ 201WTMSSTSV22: VL Stochastic Simulation | 3,00 | 2,0 | |||
........................ 369.116: VO Stochastic Simulation Weitere Infos | Amira Meddah | ||||
................ 201WTMSSTSU22: UE Stochastic Simulation | 1,50 | 1,0 | |||
........................ 369.117: UE Stochastic Simulation Weitere Infos | Devika Khurana | ||||
........ 201MMNW18: d. Mathematische Methoden in den Naturwissenschaften | 0,00-13,50 | ||||
................ 201MMNWSP1V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften (1,5 ECTS) | 1,50 | 1,0 | |||
................ 201MMNWSP2V12: VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | W | 3,00 | 2,0 | ||
................ 201MMNWSP1U12: UE Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | W | 1,50 | 1,0 | ||
................ TMAPAVOTHPH: VL Theoretische Physik für Mathematiker/innen | 6,00 | 4,0 | |||
................ TM1WDUETHPH: UE Theoretische Physik für Mathematiker/innen | 1,50 | 1,0 | |||
........ 201MMTK18: e. Mathematische Methoden in der Technik | 0,00-13,50 | ||||
................ TM1WEUEINVE: UE Inverse Probleme | 1,50 | 1,0 | |||
................ 403MAMOINPV22: VL Inverse problems | 3,00 | 2,0 | |||
........................ 323.001: VO Inverse Problems Weitere Infos | Andreas Neubauer | ||||
................ 403COEXMMEU22: UE Mathematical Methods in Continuum Mechanics | 1,50 | 1,0 | |||
................ 201MMTKMMEV22: VL Mathematical Methods in Electrodynamics | 3,00 | 2,0 | |||
................ 403MAMOMMCV22: VL Mathematical methods in continuum mechanics | 6,00 | 4,0 | |||
................ TM1WEUEMETE: UE Mathematische Methoden der Elektrotechnik | 1,50 | 1,0 | |||
................ 201MMTKSP1V22: VL Special Topics Mathematical Methods in Engineering (1.5 ECTS) | 1,50 | 1,0 | |||
................ 201MMTKSP2V22: VL Special Topics Mathematical Methods in Engineering | 3,00 | 2,0 | |||
................ 201MMTKSP1U22: UE Special Topics Mathematical Methods in Engineering | 1,50 | 1,0 | |||
........ 201MMWW18: f. Mathematische Methoden in den Wirtschaftswissenschaften | 0,00-13,50 | ||||
................ 403MAMOFIMV22: VL Financial Mathematics | 4,50 | 3,0 | |||
................ 201MMWWFIMV22: UE Financial Mathematics | 1,50 | 1,0 | |||
................ 201MMWWSP1V22: VL Special Topics Mathematical Methods in the Economic Sciences (1.5 ECTS) | 1,50 | 1,0 | |||
................ 201MMWWSP2V22: VL Special Topics Mathematical Methods in the Economic Sciences | W | 3,00 | 2,0 | ||
........................ 325.013: VL Special Topics Mathematical Methods in the Economic Sciences: Finanzmathematik II | Peter Kritzer | ||||
................ 201MMWWSP1U22: UE Special Topics Mathematical Methods in the Economic Sciences | W | 1,50 | 1,0 | ||
........................ 325.014: UE Special Topics Mathematical Methods in the Economic Sciences: Finanzmathematik II | Peter Kritzer | ||||
................ TM1WFVOVERS: VL Versicherungsmathematik | 3,00 | 2,0 | |||
........ 201OPTI18: g. Optimierung | 0,00-13,50 | ||||
................ 201OPTICOVV22: VL Calculus of Variation | 3,00 | 2,0 | |||
................ 201OPTICOVU22: UE Calculus of Variation | 1,50 | 1,0 | |||
................ 201OPTISP1V22: VL Special Topics Optimization (1.5 ECTS) | W | 1,50 | 1,0 | ||
................ 201OPTISP2V22: VL Special Topics Optimization | W | 3,00 | 2,0 | ||
........................ 327.020: VL Special Topics Optimization: Ausgleichsrechnung | Ewald Lindner | ||||
................ 201OPTISP1U22: UE Special Topics Optimization | W | 1,50 | 1,0 | ||
........................ 327.008: UE Special Topics Optimization: Ausgleichsrechnung | Ewald Lindner | ||||
........ 201SYMR18: h. Symbolisches Rechnen | 0,00-13,50 | ||||
................ 404ANDMACOV20: VL Algebraic combinatorics | 3,00 | 2,0 | |||
................ 201SYMRACOU20: UE Algebraic combinatorics | 1,50 | 1,0 | |||
................ 201SYMRCAGV20: VL Commutative algebra and algebraic geometry | 3,00 | 2,0 | |||
................ 201SYMRCAGU20: UE Commutative algebra and algebraic geometry | 1,50 | 1,0 | |||
................ 404ANDMCOAV20: VL Computer Analysis | 3,00 | 2,0 | |||
........................ 326.079: VL Computer Analysis Weitere Infos | Veronika Elisabeth Pillwein | ||||
................ 201SYMRCOAU20: UE Computer Analysis | 1,50 | 1,0 | |||
................ 201SYMRPSRK20: KV Programming project symbolic computation | W | 3,00 | 2,0 | ||
................ 201SYMRSF2V20: VL Special Functions and Symbolic Summation | 3,00 | 2,0 | |||
................ 201SYMRSF2U21: UE Special Functions and Symbolic Summation | 1,50 | 1,0 | |||
................ 201SYMRSP1V20: VL Special Topics symbolic computation (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201SYMRSP2V20: VL Special Topics symbolic computation | W | 3,00 | 2,0 | ||
........................ 326.083: VL Special Topics symbolic computation: Orthogonale Polynome und Symbolic Computation | Veronika Elisabeth Pillwein | ||||
........................ 326.080: VL Special Topics symbolic computation: Symbolische Lineare Algebra Weitere Infos | Carsten Schneider | ||||
........................ 326.084: VL Special Topics symbolic computation: Algorithmische Algebraische Geometrie | Günter Landsmann | ||||
........................ 326.075: VL Special Topics symbolic computation: Spezielle Funktionen und Symbolische Summation II Weitere Infos | Silviu Radu | ||||
................ 201SYMRSP2U20: UE Special Topics symbolic computation | W | 1,50 | 1,0 | ||
........................ 326.00D: UE Special Topics symbolic computation: Special Functions and Symbolic Summation II | Silviu Radu | ||||
........ 201LOSD18: i. Logik und Softwaredesign | 0,00-13,50 | ||||
................ 404LFMTAURV20: VL Automated Reasoning | 3,00 | 2,0 | |||
................ 201LOSDAURU13: UE Automated Reasoning | 1,50 | 1,0 | |||
................ 201LOSDCTHV20: VL Computability theory | 3,00 | 2,0 | |||
................ 201LOSDDAAV13: VL Design and Analysis of Algorithms | 3,00 | 2,0 | |||
................ 921SOENFMSK13: KV Formal Methods in Software Development | 4,50 | 3,0 | |||
................ 201LOSDFPLV13: VL Formal Semantics of Programming Languages | 3,00 | 2,0 | |||
........................ 326.0FS: VL Formal Semantics of Programming Languages Weitere Infos | Wolfgang Schreiner | ||||
................ 201LOSDIPDV20: VL Introduction to parallel and distributed computing | 3,00 | 2,0 | |||
................ 404LFMTML1V20: VL Mathematical logic 1 | 3,00 | 2,0 | |||
................ 201LOSDML1U20: UE Mathematical logic 1 | 1,50 | 1,0 | |||
................ 404PCSDPSTK20: KV Practical Software Technology | 4,50 | 3,0 | |||
........................ 326.041: KV Practical Software Technology Weitere Infos | Ioana Cleopatra Pau | ||||
................ 201LOSDPLSK20: KV Practical in Logic and Software Design | W | 3,00 | 2,0 | ||
........................ 326.054: KV Practical in Logic and Software Design: Funktionales Programmieren Weitere Infos | Teimuraz Kutsia | ||||
........................ 326.062: KV Practical in Logic and Software Design: Programmieren in Mathematica Weitere Infos | Ralf Hemmecke | ||||
................ 201LOSDRCLV14: VL Rewriting in Computer Science and Logic | 3,00 | 2,0 | |||
........................ 326.065: VL Rewriting in Computer Science and Logic Weitere Infos | Teimuraz Kutsia | ||||
................ 201LOSDSP1V20: VL Special topics logic and software design (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201LOSDSP2V20: VL Special topics logic and software design | W | 3,00 | 2,0 | ||
........................ 326.00E: VL Special topics logic and software design: Formale Sprachen und formale Grammatiken | Nikolaj Popov | ||||
........................ 326.076: VL Special topics logic and software design: Formale Modelle Paralleler und Verteilter Systeme Weitere Infos | Wolfgang Schreiner | ||||
................ 201LOSDSP1U20: UE Special topics logic and software design | W | 1,50 | 1,0 | ||
........................ 326.008: UE Special topics logic and software design: Rewriting in Computer Science and Logic | Ioana Cleopatra Pau | ||||
................ TM1WIVOTHSW: VL Thinking, Speaking, Writing | W | 3,00 | 2,0 | ||
........ 201ADMA18: j. Algebra und Diskrete Mathematik | 0,00-13,50 | ||||
................ 201ADMAALGV20: VL Algebra | 6,00 | 4,0 | |||
................ 201ADMAALGU20: UE Algebra | 1,50 | 1,0 | |||
................ 404ANDMCA2V20: VL Computer Algebra II | 3,00 | 2,0 | |||
........................ 368.302: VL Computer Algebra II | Manuel Kauers | ||||
................ 201ADMACA2U20: UE Computer Algebra II | 1,50 | 1,0 | |||
................ 201ADMADEMV20: VL Discrete and experimental mathematics | 3,00 | 2,0 | |||
................ 201ADMADEMU20: UE Discrete and experimental mathematics | 1,50 | 1,0 | |||
................ 201ADMAGRBV20: VL Groebner Bases | 3,00 | 2,0 | |||
................ 201ADMALA1V12: KO Lineare Algebra und Analytische Geometrie 1 | 0,00 | 2,0 | |||
................ 201ADMALA2V12: KO Lineare Algebra und Analytische Geometrie 2 | 0,00 | 2,0 | |||
........................ 368.108: KO Lineare Algebra und Analytische Geometrie 2 | Erhard Aichinger | ||||
................ 201ADMASP1V20: VL Special Topics algebra and discrete mathematics (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201ADMASP2V20: VL Special Topics algebra and discrete mathematics | W | 3,00 | 2,0 | ||
........................ 368.157: VL Special Topics algebra and discrete mathematics: Semigroups | Peter Fuchs | ||||
........................ 368.165: VL Special Topics algebra and discrete mathematics: Combinatorial Geometry | Dmitrii Zhelezov; Audie Warren | ||||
................ 201ADMASP1U20: UE Special Topics algebra and discrete mathematics | W | 1,50 | 1,0 | ||
........ 201FUAN18: k. Funktionalanalysis | 0,00-13,50 | ||||
................ TM1WKVODIST: VL Distributionen und lokalkonvexe Räume | 3,00 | 2,0 | |||
................ TM1WKUEDIST: UE Distributionen und lokalkonvexe Räume | 1,50 | 1,0 | |||
................ TM1WKVOERGO: VL Ergodentheorie | 3,00 | 2,0 | |||
................ TM1WKUEERGO: UE Ergodentheorie | 1,50 | 1,0 | |||
................ TM1WKVOOPER: VL Operatorentheorie | 3,00 | 2,0 | |||
................ TM1WKUEOPER: UE Operatorentheorie | 1,50 | 1,0 | |||
................ TM1WKVOSOBO: VL Sobolev-Räume | 3,00 | 2,0 | |||
................ TM1WKUESOBO: UE Sobolev-Räume | 1,50 | 1,0 | |||
................ TMAPAVOSPEK: VL Spektraltheorie und Distributionen | 6,00 | 4,0 | |||
................ TM1WKUESPEK: UE Spektraltheorie und Distributionen | 3,00 | 2,0 | |||
................ 201FUANSP1V12: VL Spezialvorlesung Funktionalanalysis (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201FUANSP2V12: VL Spezialvorlesung Funktionalanalysis | W | 3,00 | 2,0 | ||
................ 201FUANSP1U12: UE Spezialvorlesung Funktionalanalysis | W | 1,50 | 1,0 | ||
........ 201GEOM18: l. Geometrie | 0,00-13,50 | ||||
................ 201GEOMCOGV14: VL Computational Geometry | 3,00 | 2,0 | |||
........................ 356.190: VL Computational Geometry Weitere Infos | Bert Jüttler | ||||
................ 201GEOMCOGU14: UE Computational Geometry | 1,50 | 1,0 | |||
........................ 356.191: UE Computational Geometry Weitere Infos | Lisa Groiss | ||||
................ TM1WLVOCAGD: VL Computer-aided geometric design | 3,00 | 2,0 | |||
................ TM1WLUECAGD: UE Computer-aided geometric design | 1,50 | 1,0 | |||
................ 402MMPHDGEV22: VL Differential Geometry | 3,00 | 2,0 | |||
................ 201GEOMDGEU22: UE Differential Geometry | 1,50 | 1,0 | |||
................ TM1WLVOTOPO: VL Einführung in die Topologie | 3,00 | 2,0 | |||
........................ 356.010: VO Einführung in die Topologie: Infos unter http://www.ag.jku.at/2023STopologyPoster.pdf Weitere Infos | Felix Scholz | ||||
................ TM1WLUETOPO: UE Einführung in die Topologie | 1,50 | 1,0 | |||
........................ 356.011: UE Einführung in die Topologie Weitere Infos | Sofia Trautner | ||||
................ TM1WLVOHDGE: VL Höhere Differentialgeometrie | 3,00 | 2,0 | |||
........................ 356.170: VO Höhere Differentialgeometrie Weitere Infos | Felix Scholz | ||||
................ TM1WLUEHDGE: UE Höhere Differentialgeometrie | 1,50 | 1,0 | |||
........................ 356.171: UE Höhere Differentialgeometrie | Lisa Groiss | ||||
................ TM1WLVOHTOP: VL Höhere Topologie | 3,00 | 2,0 | |||
................ TM1WLUEHTOP: UE Höhere Topologie | 1,50 | 1,0 | |||
................ 201GEOMSP1V22: VL Special Topics Geometry (1.5 ECTS) | W | 1,50 | 1,0 | ||
................ 201GEOMSP2V22: VL Special Topics Geometry | W | 3,00 | 2,0 | ||
................ 201GEOMSP1U22: UE Special Topics Geometry | W | 1,50 | 1,0 | ||
................ TM1WLVOSPLI: VL Splines | 3,00 | 2,0 | |||
................ TM1WLUESPLI: UE Splines | 1,50 | 1,0 | |||
........ 201WIMS18: m. Wissensbasierte mathematische Systeme | 0,00-13,50 | ||||
................ 201WIMSFUSV18: VL Fuzzy Systems | 3,00 | 2,0 | |||
................ 201WIMSFUSU18: UE Fuzzy Systems | 1,50 | 1,0 | |||
................ 404LFMTMVLV20: VL Manyvalued Logic | 3,00 | 2,0 | |||
................ 201WIMSMVLU20: UE Manyvalued Logic | 1,50 | 1,0 | |||
................ 201WIMSSP1V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201WIMSSP2V12: VL Spezialvorlesung Wissensbasierte mathematische Systeme | W | 3,00 | 2,0 | ||
................ 201WIMSSP1U12: UE Spezialvorlesung Wissensbasierte mathematische Systeme | W | 1,50 | 1,0 | ||
........ 201ZATH18: n. Zahlentheorie | 0,00-13,50 | ||||
................ 404ANDMANTV20: VL Applied Number Theory | 3,00 | 2,0 | |||
................ 201ZATHANTU20: UE Applied Number Theory | 1,50 | 1,0 | |||
................ 201ZATHCRGV20: VL Cryptography | 3,00 | 2,0 | |||
................ 201ZATHCRGU20: UE Cryptography | 1,50 | 1,0 | |||
................ 201ZAHLEKOV20: VL Einführung in die Kombinatorik | 3,00 | 2,0 | |||
................ 201ZATHEZTV20: VL Einführung in die Zahlentheorie | 3,00 | 2,0 | |||
........................ 325.004: VO Einführung in die Zahlentheorie Weitere Infos | Friedrich Pillichshammer | ||||
................ 201ZATHEZTU20: UE Einführung in die Zahlentheorie | 1,50 | 1,0 | |||
........................ 325.005: UE Einführung in die Zahlentheorie Weitere Infos | Friedrich Pillichshammer | ||||
................ 201ZATHNMNV22: VL Number-theoretic Methods in Numerical Analysis | 3,00 | 2,0 | |||
........................ 325.006: VO Number-theoretic Methods in Numerical Analysis Weitere Infos | Friedrich Pillichshammer | ||||
................ 201ZATHNMNU22: UE Number-theoretic Methods in Numerical Analysis | 1,50 | 1,0 | |||
................ 201ZATHSP1V20: VL Special Topics Number theory (1,5 ECTS) | W | 1,50 | 1,0 | ||
................ 201ZATHSP2V20: VL Special Topics Number theory | W | 3,00 | 2,0 | ||
........................ 325.015: VL Special Topics Number theory | Arne Winterhof | ||||
................ 201ZATHSP1U20: UE Special Topics Number theory | W | 1,50 | 1,0 | ||
........................ 325.016: UE Special Topics Number theory | Arne Winterhof | ||||
................ 201ZATHZTHV20: VL Zahlentheorie | 3,00 | 2,0 | |||
................ 201ZATHZTHU20: UE Zahlentheorie | 1,50 | 1,0 | |||
........ 201EMAA12: o. Ethik in der Mathematik und ihren Anwendungen | 0,00-3,00 | ||||
................ TM1WOKVETHI: KV Ethik in der Mathematik und ihren Anwendungen | 3,00 | 2,0 | |||
201BAAR18: Bachelorarbeit | 9,00 | ||||
........ 201BAARBASS18: SE Bachelorseminar mit Bachelorarbeit | 9,00 | 2,0 | |||
................ 327.019: SE Bachelorseminar mit Bachelorarbeit | Helmut Gfrerer; Herbert Egger; Stefan Takacs | ||||
................ 325.018: SE Bachelorseminar mit Bachelorarbeit | Gerhard Larcher; Friedrich Pillichshammer | ||||
................ 356.320: SE Bachelorseminar mit Bachelorarbeit | Bert Jüttler | ||||
................ 369.131: SE Bachelorseminar mit Bachelorarbeit Weitere Infos | Evelyn Buckwar | ||||
................ 368.161: SE Bachelorseminar mit Bachelorarbeit | Manuel Kauers; Erhard Aichinger; Peter Fuchs; Oliver Roche-Newton | ||||
................ 326.012: SE Bachelorseminar mit Bachelorarbeit | Peter Paule; Carsten Schneider | ||||
................ 357.510: SE Bachelorseminar mit Bachelorarbeit Weitere Infos | Luca Gerardo-Giorda; Susanne Saminger-Platz; Thomas Vetterlein | ||||
201FRST12: Freie Studienleistungen | 9,00 |